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Abstract

The pinning effect of small incoherent particles on grain growth in two-dimensional polycrystalline systems has been simulated using a
phase field model. Simulations were performed for different sizes and area fractions of the second-phase particles and for two types of
initial microstructure and different initial grain sizes. The grain size distribution and the number of particles located at grain boundaries
were determined as a function of time. When particles are present during the nucleation of the grains, most particles are located at grain
boundaries and the final mean grain radius Rlim is predicted by Rlim ¼ 1:28r=f 0:50

a , with r the radius and fa the area fraction of the par-
ticles. When particles nucleate homogeneously in a polycrystalline system with initial grain radius R0, many particles lie within the grains
and the final grain size depends on R0. It was also observed that the peak of the normalized grain size distribution shifts towards smaller
grain sizes due to the pinning effect. The simulation results are compared with theoretical relations, previous simulation results and exper-
imental data for thin films from the literature.
� 2005 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Second-phase particles have the capacity to �pin� grain
boundaries and therefore affect the grain growth behavior
of polycrystalline materials profoundly. They reduce the
mobility of the grain boundaries and eventually, when a
critical grain size is reached, arrest grain growth. The exis-
tence of a final grain size is of practical importance in alloy
development, since many macroscopic properties are
related to the grain size. For example, in the manufacturing
of high-quality steels, insoluble inclusions or precipitates
are often introduced into the material for grain refinement
[1,2]. Also in the aluminum films used in micro-electronic
devices the pinning effect of small precipitates is applied
to tailor the final microstructure [3,4]. To optimize the per-
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formance and reliability of these materials, a good under-
standing of the effect of second-phase particles on the
microstructure evolution is required.

The pinning pressure PZ (pinning force exerted on a unit
area of grain boundary) exerted by a distribution of inco-
herent spherical particles on the grain boundaries was first
calculated by Zener [5,6], although in an approximate way:

PZ ¼ 3f Vrgb

4r
; ð1Þ

r and fV are, respectively, the radius and the volume frac-
tion of the particles and rgb is the grain boundary energy.
It was assumed that grain boundaries are straight and that
particles are randomly distributed. Therefore, only parti-
cles within a distance r from the grain boundary contribute
to the pinning effect and all contributing particles exert the
same pinning force FZ = prrgb.

1 A stress balance between
rights reserved.

1 In fact, with these assumptions the interactions between grain
boundaries and particles are completely omitted.
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the driving force for grain growth and the pinning pressure
PZ results in the Zener relation

Rlim

r
¼ b

1

f b
V

; ð2Þ

with b = 4/3 and b = 1, which gives the critical maximum
grain size as a function of the volume fraction and the
mean radius of the second-phase particles. To obtain a
more accurate description, the characteristic �dimple� shape
of a grain boundary near a grain boundary-particle inter-
section was considered [7], mainly resulting in a lower value
for b. A relation of the same form as (2) was obtained with
b = 2/9 and b = 0.93. It was observed that for high volume
fractions most particles are located at grain boundaries,
whereas for low volume fractions the distribution of the
particles (with respect to the grain boundaries) is more ran-
dom. In [8], relation (2) with b = 1.8 and b = 1/3 was there-
fore proposed for high volume fractions in combination
with b = 2/9 and b = 0.93 for low volume fractions. For
two-dimensional systems, b ¼

ffiffiffi
3

p
and b = 1/2 was ob-

tained assuming that stagnation occurs when there is a par-
ticle at each grain boundary [9]. Many more attempts were
made to improve the Zener relation [6,10,11]. However,
calculation of the pinning pressure exerted by a distribu-
tion of particles is extremely complex [6], since it requires
the knowledge of the number of particles located at grain
boundaries and the geometry of each grain boundary-
particle intersection. Simplifying assumptions were always
necessary and most theories resulted in a relation similar
to the Zener relation.

From mean field theory, the following equation was
obtained for the growth rate of a single grain in a material
containing second-phase particles [12],

dR
dt

¼ cMrgb

1

Rcrit

� 1

R
� PZ

crgb

� �
. ð3Þ

M is grain boundary mobility and c is a dimensionless
constant. The negative sign applies for large grains with
1/R < 1/Rcrit � PZ/crgb and the positive sign for small
grains with 1/R > 1/Rcrit + PZ/crgb. Between these two
limits dR/dt = 0. Rcrit is related to the mean grain radius
and PZ is the pinning pressure of the particles. Relation
(3) in combination with a continuity equation (expressing
that grains have to be space filling) gives

dR
2

dt
¼ c

2
Mrgb 1� PZR

crgb

� �2

; ð4Þ

for the temporal evolution of the mean grain radius. The
relation describes a growth rate that is initially parabolic,
subsequently decreases and eventually stagnates. It was
also derived from Eq. (3) [13,14] that, due to the pinning
effect, the normalized grain size distribution becomes shar-
per and its peak shifts towards smaller grain sizes during
grain growth.

Experimental data on Zener pinning are too limited and
scattered to conclude on the validity of the different
assumptions [10]. Therefore simulations, mainly Monte
Carlo (based on a Potts model) [9,15–20] and front-tracking
(based on a vertex model) [21,22] simulations, were per-
formed to study the pinning effect of particles on grain
growth in more detail. The major advantage of simulations
is that no assumptions must be made about the number of
particles interacting with grain boundaries and the grain
boundary geometry at a grain boundary–particle intersec-
tion. However, if the simulation grid is too coarse to resolve
the grain boundary shape appropriately or if the system size
is too small, simulation results may be incorrect [17,23,24].
Adequate computer resources and long computation times
are therefore required. The simulations show that the frac-
tion of particles located at grain boundaries is considerably
larger than assumed in the Zener relation and increases with
the volume fraction of the particles. Furthermore, many
particles pin the vertices were grain boundaries intersect,
which is more effective than pinning a single grain bound-
ary. It was also noticed that the pinning effect in two-dimen-
sional (2D) systems is stronger than in three-dimensional
(3D) bulk materials, mainly because in 2D systems grain
boundaries have the tendency to become straight in between
the particles [8,25]. Thus, it is more difficult for the grain
boundaries to escape from the particles, since all driving
pressure for grain boundary movement is removed once a
grain boundary is straight. Most 2D simulations [9,16–
19,21,22] confirm that the volume fraction exponent b is
approximately 0.5. For 3D systems, there is less agreement.
In [15,17] simulations for 0.005 < fV < 0.16 gave values for b
close to 1/3, whereas in [20], b equal to one was obtained for
0.025 < fV < 0.15.

Today the phase field method is developing as a versatile
tool for simulating microstructure evolution phenomena,
such as solidification, precipitation and grain growth.
Grain growth in single-phase materials has been simulated
several times with the phase field method [26–29]. An
extension of the model of [26] towards grain growth in
two-phase materials was given in [30,31] and 2D phase field
simulations for Zener pinning by growing second-phase
particles were discussed in [32]. In [32] simulations were
performed for volume fractions of the second-phase
between 0.1 and 0.4 and R=�r-ratios (the ratio between the
mean grain radius and the mean particle radius) smaller
than 4.4. However, in many materials fV < 0.1 and particles
can be more than 100 times smaller than the grains. Then
the model of [32] is too computationally intensive.

In a previous article, we presented a different phase field
model for grain growth in the presence of second-phase par-
ticles which have a size and shape that is constant in time
[33]. The interaction between a single particle and a grain
boundary was also shown. In this article 2D phase field sim-
ulations for Zener pinning in polycrystalline systems are
presented. Simulations were performed for different area
fractions and sizes of the particles and for two types of initial
microstructure and different initial grain sizes. The results
are compared with relation (2), previous simulation results
and experimental data for Al-alloy films. Furthermore,
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computational requirements are discussed and an estima-
tion of the requirements for 3D simulations is made.
2. Phase field model

According to the phase field model for grain growth in
single-phase materials of [26], a large number of phase field
variables

g1ðr; tÞ; g2ðr; tÞ; . . . ; gpðr; tÞ;

is used to distinguish the different orientations of the ma-
trix grains. They are continuous functions of the spatial
coordinates and the time. Within a grain labelled by gi, gi
equals 1 or �1, while all other phase field variables equal
0. At a grain boundary all gi vary continuously between
their equilibrium values in the neighbouring grains. A spa-
tially dependent function U that equals 1 inside a particle
and 0 in the matrix grains is used to describe the distribu-
tion of the particles. U is considered to be constant in time.

The free energy of the system is described by the
expression

F ¼
Z
V

m
Xp
i¼1

� 1

2
g2i þ

1

4
g4i þ

Xp
i¼1

Xp
j 6¼i

g2i g
2
j

 !"

þ �U
Xp
i¼1

g2i þ
Xp
i¼1

ji

2
ðrgiÞ

2

#
d3r. ð5Þ

The first four terms give the contribution due to bulk free
energy. m and � are positive constants, with � > m/2 so that
for U = 0 the local free energy has 2p minima with equal
depth, located at

ðg1; g2; . . . ; gpÞ ¼ ð1; 0; . . . ; 0Þ; ð0; 1; . . . ; 0Þ; . . . ; ð0; 0; . . . ; 1Þ;
ð�1; 0; . . . ; 0Þ; ð0;�1; . . . ; 0Þ; . . . ;
ð0; 0; . . . ;�1Þ;

reflecting the 2p orientations a matrix-grain can have, and
for U = 1 the local free energy has one minimum at all gi
equal to 0. The last term, with all ji positive constants, is
a contribution due to local gradients of the phase field vari-
ables. It only differs from zero at the grain boundaries and
particle–matrix interfaces.

The phase field variables gi are non-conserved. Their
spatial and temporal evolution is obtained by solving a
time-dependent Ginzburg–Landau equation for each vari-
able gi, i = 1,2, . . .,p,

ogiðr; tÞ
ot

¼�Li
oF

ogiðr; tÞ

¼�Li m �giþ g3i þ 2gi
Xp
j 6¼i

g2j

 !
þ 2�giU

2 �jir2gi

" #
.

ð6Þ

Li are kinetic coefficients that are related to the grain
boundary mobility. We refer to [33] for a complete descrip-
tion of the model.
For isotropic grain boundary energy and mobility ji = j
and Li = L,"i. Then grain boundary energy is proportional
to

ffiffiffiffiffiffiffi
jm

p
and grain boundary thickness to

ffiffiffiffiffiffiffiffiffi
j=m

p
. For a

given value of j and m, interfacial energy of the particles
depends on �, however � can only vary within a small range.
For normal grain growth, growth rate is proportional to
Lj(1/R), with R the local mean curvature of the grain
[28]. In [33] grain boundary and interfacial energies were
calculated for different values of the parameters j, m and �.

To consider the growth and dissolution of particles, for
example to simulate Ostwald ripening, at least one conser-
vative variable related to the local composition must be
added to the set of phase field variables. The spatial and
temporal evolution of a conservative phase field variable
is described by a Cahn–Hilliard equation, which contains
fourth order derivatives of the phase field variable to the
spatial coordinates. As a consequence, the numerical
solution is considerably more complicated. In the model
of [32], beside the set of phase field variables for the matrix
grains and a concentration variable, a second set non-
conservative phase field variables is used to distinguish
the different orientations of the particles. However, when
particles are finely dispersed and interfacial properties are
isotropic, the orientation of the particles is not important.
Moreover, in some cases the coarsening of the particles is
negligible, for example at temperatures were the solubility
of the second phase is very low [34].

3. Model parameters and simulation procedure

The number of parameters was restricted to a minimum
and their choice was mainly based on computational con-
siderations and previous phase field simulations for normal
grain growth [28]. Thirty-six phase field variables were used
to represent the polycrystalline matrix. j was chosen equal
to 0.5 and L, m and � equal to 1. Periodic boundary condi-
tions were assumed and a semi-implicit Fourier-spectral
method [35] was employed for the numerical solution of
the phase field Eq. (6). The grid spacing Dx was taken equal
to one. For the parameter values given above, the semi-
implicit Fourier-spectral method allows a step size Dt equal
to 1. In the further discussion, length and area are
expressed in number of grid points (g.p.) and time in num-
ber of time steps (t.s.). In [28] it was shown that j/m should
be at least 4 (for Dx = 1) to resolve the evolution of the
phase field variables at grain boundaries appropriately
and to obtain the correct rate of grain growth. However,
grain boundary thickness is then more than 10 g.p. As a
compromise between accuracy and efficiency, j/m equal
to 0.5 was applied in the simulations.

According to the Zener relation (2), the final grain size
is proportional to the particle size for a given area frac-
tion. Consequently, it is better to not take the particle size
too large, so that system size is restricted. On the other
hand, particles must have a minimum size, that depends
on the grain boundary thickness, to obtain realistic grain
boundary–particle interactions [33]. Therefore, particles
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Fig. 1. Discretized shape of the particles used in the simulations: (a) r = 3
and (b) r = 2.5. White represents U = 1 and black U = 0.
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with radius 2.5 and 3 g.p. were used. U was only deter-
mined in the discrete grid points: it equals one at grid
points within particles and zero at the other grid points.
For both particles the representation by U is shown in
Fig. 1.

To obtain a fine grained microstructure, small random
values between �0.001 and 0.001 were assigned to the
phase field variables at all grid points and then phase field
variables were allowed to evolve according to Eq. (6). After
about 50 time steps the grains impinge. In a first set of sim-
ulations (further referred as R0 ¼ 0), particles were present
during the nucleation of the grains. Then most of the par-
ticles end up at grain boundaries. The simulations corre-
spond, for example, to grain growth after solidification of
a melt containing solid particles, or to grain growth in thin
films with second-phase particles prepared by electrolytic
co-deposition. In a second set of simulations (further
referred as R0 > 0), the role of the initial grain size was
studied. Grain nucleation and initial grain growth occurred
first without particles. When the mean grain size equaled a
specified initial grain size R0, particles were randomly dis-
tributed throughout the system. As a consequence, many
particles lie within grains. These simulations correspond
to the case where grain growth follows homogeneous pre-
cipitation or recrystallization.2 The time step when parti-
cles are added is always considered as the beginning
(t = 0) of the experiment.

Area fractions between 0.004 and 0.16 and initial grain
sizes up to 40.8 were considered. A few simulations for sin-
gle-phase system were also implemented. System sizes were
256 · 256, 512 · 512 and 1024 · 1024 g.p. An IBM Pseries
630 with power4 processors of 1 GHz and 4 GB RAM was
used to run the simulations. The MATLAB� programming
language allows an efficient implementation of the Fourier-
spectral method [36].

4. Simulation results

Fig. 2 shows the grain growth evolution for both types
of initial microstructure. The function W, defined as
2 Because the driving pressure for recrystallization is much larger than
for grain growth, grain boundaries can more easily pass particles [10]
resulting in a large number of particles within the grains.
Wð~rÞ ¼
Xp
i¼1

g2i ð~rÞ; ð7Þ

is displayed using grey-levels with white representing W = 1
and black W = 0. Particles appear as black spots, grains are
bright and grain boundaries grey. The radius of a grain is
calculated as R ¼

ffiffiffiffiffiffiffiffiffi
A=p

p
, with A the number of grid points

within the grain. The initial microstructure for a system
where particles were present before nucleation of the grains
(R0 ¼ 0) is displayed in Fig. 2(a). Initially all particles are
located at grain boundaries. The Fig. 2(b)–(d) show that
during grain growth the grain boundaries can escape from
some of the particles. However, grain boundaries easily be-
come straight and therefore lack the driving pressure to
pass the particles. As a consequence, most of the particles
are still located at grain boundaries in the final microstruc-
ture, where all grain boundaries are straight. When parti-
cles nucleate after grains have formed (R0 > 0), initially
many particles are located within the grains (Fig. 2(e)),
but the number of particles on grain boundaries increases
during grain growth (Fig. 2(f)–(h)). The grain boundaries
are pinned by the particles they meet, whereas unpinning
is more difficult because the grain boundaries have the ten-
dency to become straight in between the particles. Never-
theless, at the end, when grain growth has arrested, there
are still more particles located within grains than is the case
for R0 ¼ 0, in Fig. 2(d). Although the size and area fraction
of the particles are the same, the final grain size is larger
and the time before grain growth arrests, is longer for
R0 > 0. Thus the simulations show that the pinning effect
of the particles depends on initial grain boundary configu-
ration and initial grain size.

In Fig. 3 the mean grain area is plotted as a function of
time for several simulation experiments. For pure single-
phase materials the temporal evolution follows the power
growth law

R ¼ k � tn; ð8Þ

with n = 0.5 [10]. The mean grain area increases linearly in
time, accordingly. When particles are present, the growth
rate reduces gradually and finally becomes zero. In general,
grain growth stops earlier and the final grain size is smaller
for larger area fractions of the second phase, which is in
qualitative agreement with mean field predictions [10,12].
Further, the final grain size increases with initial grain size
and the time before grain growth arrests is also longer for a
larger initial grain size. The form of Eq. (4) does not allow
an easy fit of the simulation data. However, for R0 = 0
grain growth behavior can be quantified as follows
(Fig. 3(c)). In the beginning grain growth is according to
the power growth law with n between 0.3 and 0.4. The va-
lue of n is highly related to the number of particles per unit
of area. For a system of 512 · 512 g.p. containing 80 par-
ticles n equaled 0.4 for both particle sizes, for 160 particles
n equaled 0.37. Then there is a clear transition to growth
stagnation where the grain size is constant. For R0 > 0 such
a period of steady-state growth according to a power
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Fig. 3. Temporal evolution of the mean grain area in systems containing second-phase particles. (a) R0 = 0, r = 3 and different area fractions of the
particles fa, compared with the evolution of the mean grain area in a single-phase system. (b) r = 3, fa = 0.015 and different initial grain sizes R0. (c) and (d)
r = 3, fa = 0.015 and different initial grain sizes, (c) R0 ¼ 0 and (d) R0 > 0, on a logarithmic scale.

Fig. 2. Evolution of a polycrystalline system containing second-phase particles for r = 3 and fa = 0.015. (a–c) Particles were present during nucleation of
the grains (R0 ¼ 0). Microstructures at time steps (a) 200, (b) 3000 and (c) 30,000 are shown. No further evolution was observed after approximately 30,000
time steps, where Rlim ¼ 29:5. (d–f) Particles nucleated when the grain radius equaled R0 ¼ 14:4. Microstructures at time steps (d) 5, (e) 3000 and (f) 35,000
are shown. No further evolution was observed after approximately 35,000 time steps, where Rlim ¼ 32:3.
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growth law is not present or is very short. 2D Monte Carlo
simulations for R0 = 0 [9] show a more abrupt transition
from growth according to the power growth law with
n = 0.4, to stagnation. For front-tracking simulations
[21,22], n equals 0.5 as long as only a small number of par-
ticles interact with the grain boundaries and then gradually
decreases. According to the authors� knowledge, there is no
systematic experimental information that allows the verifi-
cation of Eq. (4) and the simulation results.

For all simulations, the ratio of the final mean grain
radius and the particle radius, is plotted as a function of
second-phase area fraction in Fig. 4. There is a consider-
able scatter on the results for fa < 0.01, since the number
of particles considered in one simulation and the number
of grains in the final microstructure are rather low (often
less than 50). Due to restrictions in computer memory it
was not possible to increase the system size above
1024 · 1024 g.p. Therefore, in order to have a reliable value
for the final grain radius, the average over all simulation
experiments for a particular particle size and area fraction
must be taken. The systems contain enough grains to
assume that boundary effects are negligible.

The simulation results for R0 ¼ 0 fit relation (2) for
b = 1.28(±0.15) and b = 0.50(±0.02) very well. The coeffi-
cients were obtained from a linear least squares fit of the
logðfaÞ � logðRlim=rÞ data points. The number between
brackets indicates the 95% confidence limits. The adjusted
R2 value was 0.98. The relation is in good agreement with
the theoretical relation for 2D from [9] (b ¼

ffiffiffi
3

p
and

b = 0.5) and with relations previously obtained from simu-
lations. Monte Carlo simulations gave, for example,
b ¼

ffiffiffiffiffiffiffi
2:9

p
and b = 0.5 [9] or b = 1.2 and b = 0.55 [16],

and front-tracking simulations gave b = 0.5 [21] or
b = 0.46 [22] (b was not determined). Presuming b = 0.5,
the phase field simulations in [32] gave b = 1.3 for
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Fig. 4. Final grain radius Rlim divided by particle radius r as a function of
area fraction of the particles fa for different initial grain sizes: R0 ¼ 0, 14.4
and 28.2. A series of data points for a constant particle size r = 2.5 and
area fraction fa = 0.032 and increasing initial grain size R0, is also plotted:
R0 ¼ 10:9, 14.4, 28.0 and 40.8.
fa < 0.3. For fa > 0.3, results were affected by clustering of
the particles. All relations are plotted in Fig. 5. Our rela-
tion is very close to the relation from [32]. Due to the dif-
fuse interfaces the pinning force of a particle is slightly too
high in phase field simulations [33], which may result in a
lower value for b. This probably explains why both curves
obtained from phase field simulations are below those
obtained from Monte Carlo simulations. For Monte Carlo
simulations it was observed [17] that b may depend on the
numerical grid, as the grid unit affects the discretized shape
of small particles. Thanks to the diffuse character of the
interfaces, this discretization artefact seems to be insignifi-
cant for phase field simulations. Although both particles
used in the present simulations are slightly different in
shape after discretization (see Fig. 1) and are also different
from the growing particles in [32], almost the same relation
is obtained.

The simulation results for R0 > 0 show that for high
area fractions of the particles the final mean grain radius
is considerably affected by the initial microstructural con-
figuration. For a given area fraction and size of the parti-
cles, the final grain size increases with initial grain size.
For low area fractions, the influence of the initial micro-
structure is negligible. A fit of the data shows that b
increases and b decreases in relation (2) for increasing
initial grain size: b = 1.9(±0.5) and b = 0.43(±0.09) was
obtained for R0 � 14:4 (adjusted R2 = 0.95) and b =
4.4(±1.0) and b = 0.28(±0.07) for R0 � 28:2 (adjusted
R2 = 0.92). Thus, the coefficients in relation (2) depend
on the initial configuration. However, the adjusted R2

values indicate that a relation of the form (2) is less appro-
priate for high initial grain sizes. In the limit of large initial
grain size and high area fraction, the final grain size
becomes independent of the area fraction. Grain bound-
aries then merely adapt their shape in order to intersect
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Fig. 5. Zener type relations obtained from different 2D simulation
experiments and from a theoretical estimation: present phase field simula-
tions, phase field simulations from [32] (PFM1), Monte Carlo simulations
from [9] (MC1) and [16] (MC2), theoretical relation assuming that at grain
growth stagnation there is a particle at each grain boundary [9].
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as many particles as possible, but the mean grain size
hardly increases, as is illustrated in Fig. 6. Similar observa-
tions were reported for Monte Carlo [18] and front-track-
ing [21] simulations for systems with many particles
inside the grains.

Fig. 7 gives the temporal evolution of the normalized
grain size distribution for a system containing second-
phase particles. The normalized grain size distribution
obtained for a single-phase system is also shown for one
particular time step, as it is known that for single-phase
systems the normalized grain size distribution is constant
in time. The grain size distributions were obtained from
systems with 1024 · 1024 g.p., so that at the end of the
simulation there were still 454 grains in the system. The
simulation results show that due to the second-phase par-
ticles the peak of the normalized grain size distribution
shifts towards smaller grain sizes, as predicted by mean
field theories [12–14]. However, for high area fractions
of the second-phase particles (fa > 0.1), the shift is less sig-
nificant. This observation is different from the findings
from 2D Monte Carlo simulations [9] where the normal-
ized grain size distribution was not significantly affected
by the particles. For front-tracking simulations [21,22],
on the other hand, a shift towards smaller grain sizes
was reported and it was also observed that the effect
diminishes for high pinning forces. This behavior of the
grain size distribution can be explained as follows. Since
the local driving force for a grain boundary to move for-
ward is proportional to its curvature, large grains are
often pinned more easily than small grains. As a conse-
quence, the shape of the grain size distribution changes
during grain growth. However, for high pinning forces,
grain growth is arrested before the grain size distribution
is modified significantly. Only few experimental studies of
the influence of second-phase particles on the shape of the
grain size distribution exist. Some [14,37] indicate a shift
towards smaller grain sizes, whereas for others [38] the
shape of the grain size distribution is not affected by the
particles.
Fig. 6. Evolution of a microstructure after precipitation of a random distribut
(a) Initial microstructure (R0 ¼ 40:8). (b) Final microstructure (Rlim ¼ 42:6).
5. Discussion

5.1. Role of the initial grain size

To understand the role of the initial grain size, the frac-
tion of particles located at grain boundaries / as a function
of time is plotted in Fig. 8 for both types of initial micro-
structure. When particles are present during nucleation of
the microstructure (R0 = 0), in the beginning most particles
lie on the grain boundaries (/ � 1). As grain growth pro-
ceeds, / decreases in time because the grain boundaries
escape from some of the particles, often leaving the particle
behind within a grain. The decrease in / is smaller for high
area fractions since unpinning is more difficult when a
grain boundary is pinned by many particles. When parti-
cles are homogeneously distributed throughout a system
with initial grain radius R0 > 0, initially there is no correla-
tion between the position of the particles and the grain
ion of second-phase particles (fa = 0.032, r = 2.5) at large initial grain size.
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boundaries. Many particles lie within the grains and
/ � 1. Since the moving grain boundaries get pinned by
the particles they meet, / increases in time. For high area
fractions or large initial grain sizes, particles located in
the middle of a grain have a low probability to be passed
by a grain boundary. The mean grain size exceeds the final
mean grain size obtained for R0 ¼ 0 before / reaches the
final value /lim, observed for R0 ¼ 0. For low area fractions
or when the initial grain size is small, the probability that a
particle within a grain is passed by a grain boundary is
higher and at the end / reaches the same value as in the
simulations for R0 ¼ 0. Therefore, the role of the initial
grain radius is negligible for very low area fractions and
becomes increasingly important for higher area fractions
and larger initial grain sizes.

Except for [18,21,25], the role of the initial grain size has
rarely been mentioned in literature. Sometimes [8,39] the
fraction of particles located at grain boundaries in the final
microstructure /lim is treated as an extra parameter to
avoid approximations in calculating the number of parti-
cles contributing to the pinning effect. For Zener pinning
in 2D, fa was multiplied by /lim in relation (2) with
b ¼

ffiffiffi
3

p
and b = 0.5 [8]

Rlim

r
¼ b

1

ð/limfaÞ
b ; ð9Þ

to correct for the fact that not all particles are located at
grain boundaries. Results from 2D Monte Carlo simula-
tions [19] gave a very good fit for relation (9) with
b = 1.34 and b = 0.51. However, in these simulations par-
ticles were present during nucleation of the grains and
/lim was always larger than 0.8. A fit of our simulation data
for R0 ¼ 0 gave b = 1.31(±0.12) and b = 0.49(±0.02). The
adjusted R2 value was 0.98, indicating a quite good fit.
Fig. 9 shows that the /limfa � Rlim=r data points for
R0 > 0 are closer to those for R0 ¼ 0 than is the case for
the fa � Rlim=r data points in Fig. 4. For large initial grain
sizes, nonetheless, the equation is not able to truly account
for the influence of the initial microstructure. In [18,40] a
stereological parameter R, related to the degree of contact
between grain boundaries and second-phase particles in the
final microstructure was included into the Zener relation.
Anyway, these theories are not very useful for prediction
of the final mean grain radius, as they require the knowl-
edge of /lim or R, both properties of the final micro-
structure.

From a thermodynamic point of view, it is evident that
the initial microstructure must be considered as well, since
grain growth stagnation is a metastable equilibrium. Real
thermodynamic equilibrium, where the total free energy
is minimal, consists of one matrix grain with all the parti-
cles inside. As there may be multiple metastable equilibria,
the final microstructure depends on the initial microstruc-
ture and its evolution. Relations of the form (2) are based
on a balance of all forces exerted on the grain boundaries,
but do not consider the evolution of the microstructure.
Therefore, they are not able to predict which of the meta-
stable equilibria will be reached and numerous assumptions
about the mutual distribution of particles and grain bound-
aries in the final microstructure have to be made to calcu-
late the forces. Techniques, such as phase field or Monte
Carlo simulations, combine thermodynamics and kinetics
and describe the complete evolution of a microstructure.
They can predict towards which metastable equilibrium a
microstructure will evolve. This capacity is an important
advantage, as grain growth can follow various microstruc-
tural processes, such as solidification or recrystallisation.
Depending on the processing route of a material and the
further treatments, various microstructures may be devel-
oped before grain growth starts.

In 3D systems a grain boundary can more easily
escape from particles [8,33]. The influence of the initial
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microstructure is therefore probably less in bulk materi-
als, however still present for high volume fractions of
the particles or large initial grain sizes. This may be
one of the reasons for the scatter on the experimental
data for relation (2) and for the choice of b = 1/3 instead
of b = 1 at high volume fractions [8].

5.2. Comparison with experiments

The simulation results are compared with experimental
data for Al-films containing H 0-CuAl2 precipitates [4] in
Fig. 10. The H 0-CuAl2 precipitates were disc shaped and
lay primarily in the middle of the film parallel with the
plane of the film. Further, the grains were columnar, with
their grain boundaries perpendicular to the plane of the
film. Hence, grain growth behavior and the interaction
with the particles is 2D. The experimental points lie system-
atically above the relation obtained for R0 ¼ 0. A first
explanation is that many particles are located within grains
and consequently do not contribute to the pinning effect.
However, there are many more parameters that could have
influenced the final grain size. Phenomena such as surface
grooving at grain boundaries and the preferential growth
of grains that have an orientation with low surface energy,
always occur in thin films [41]. Surface grooving contrib-
utes to the pinning of grain boundaries, whereas preferen-
tial growth due to surface energy anisotropy leads to
abnormal grain growth. Furthermore, the H 0-CuAl2 pre-
cipitates were semi-coherent, what may have affected the
grain boundary geometry at a grain boundary-particle
intersection and the pinning strength of the particle distri-
bution, mainly resulting in a higher value of b [6,42].

5.3. Computational considerations

For 2D systems the available computer resources
allowed the reproduction of the Rlim=r-values that were
experimentally measured for the Al-films, although compu-
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Fig. 10. Phase field results compared with experimental data for Al-films
containing H 0-CuAl2 precipitates [4].
tation times were long. For high area fractions, fa > 0.05,
systems of 256 · 256 g.p. were used and grain growth
arrested after about 20,000 time steps. Then, the simulation
time was approximately 10 h. For low area fractions, sys-
tem size had to be at least 512 · 512 g.p. and it could take
up to 120,000 time steps before grain growth arrested, since
at the end grain growth became very slow. Such simula-
tions lasted for approximately 20 days. For the largest sys-
tems with 1024 · 1024 g.p. the memory requirements were
close to the maximum available and it took approximately
8 days per 10,000 time steps.

In principle, the same phase field model can be used for
3D simulations. There are unfortunately two major com-
plications that enormously increase the computer require-
ments. Firstly, the Rlim=r-ratios observed for 3D systems
are typically 10 times larger than for 2D systems. The sys-
tem size must accordingly be 10 times larger in each dimen-
sion. Secondly, in 3D the total number of grid points is
proportional to the third power of the system size. As a
result, the number of grid points required to obtain a reli-
able value of the final grain size is roughly 105 times larger
than for the current 2D simulations. Computer memory
requirements and calculation times increase so drastically
that simulations must be performed on a cluster of super-
computers, using a parallel code.
6. Conclusion

The pinning effect of randomly distributed second-phase
particles was studied by 2D phase field simulations. To cut
down on computer requirements, a spatially dependent
parameter that is constant in time was used to describe
the particle distribution, instead of a large set of phase field
variables. This strong reduction of the number of phase
field variables allows to perform, on a single computer,
2D simulations for a wide range of area fraction of the par-
ticles and for Rlim=r-ratios up to 20, as observed for Al-
films. Grain growth was studied for two types of initial
microstructure:

� When particles are present during nucleation of the
grains, most particles lie on grain boundaries and the
final grain size follows a Zener type relation

Rlim

r
¼ 1:28

1

f 0:50
a

. ð10Þ

Grain growth can be characterized by growth according
to a power growth law with n between 0.3 and 0.4 at the
beginning, followed by a gradual, though clear, transi-
tion to growth stagnation.

� When particles precipitate homogeneously in a system
with initial grain size R0, many particles lie within the
grains. For high area fractions, the final grain size then
also depends on R0. The onset of growth stagnation is
less defined and the time before stagnation is longer
for a larger initial grain radius.
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Furthermore, it was seen that due to the pinning effect
the peak of the normalized grain size distribution shifts
towards smaller grain sizes. The influence of grain bound-
ary energy and interfacial energy associated with the grain
boundary–particle interface was not studied. However, in
the simulations of [32] grain boundary energy did not affect
the final grain size and in [6] it was pointed out that, for
ideal spherical and incoherent particles, the final grain size
is independent of grain boundary energy and interfacial
energy of the particles.

Simulation techniques, such as phase field and Monte
Carlo, describe the complete evolution path of a micro-
structure and can therefore predict the final grain size of
a material as a function of the initial microstructure. A
drawback is that these techniques require extensive com-
puter resources, especially for 3D simulations.
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