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There exist different phase-field models for the simulation of grain growth in polycrystalline structures.
In this paper, the model formulation, application and simulation results are compared for two of these
approaches. First, we derive relations between the parameters in both models that represent the same
set of grain boundary energies and mobilities. Then, simulation results obtained with both models, using
equivalent model parameters, are compared for grain structures in 2D and 3D. The evolution of the indi-
vidual grains, grain boundaries and triple junction angles is followed in detail. Moreover, the simulation
results obtained with both approaches are compared using analytical theories and previous simulation
results as benchmarks. We find that both models give essentially the same results, except for differences
in the structure near small shrinking grains which are most often locally and temporary for large grain
structures.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

Phase-field modeling is widely used to study the microstruc-
tural evolution in alloys during phase transformations and grain
growth, see e.g. [1–4]. Common to all phase-field models of the Al-
len–Cahn or Ginzburg–Landau type is that the microstructure is
described with nonconserved field variables, which represent for
example, the local structure and orientation. Interfaces are treated
as diffuse transitions in the value of one or more of these fields
over a narrow region. Most often, the evolution equations for the
fields are derived from a phenomenological free energy following
Onsager’s principles. The equations contain parameters that are re-
lated to physical properties of the system, such as surface energy
and mobility. There are however several possibilities to choose a
set of phase fields, the model parameters and the form of the free
energy functional, from which the evolution equations are derived.
ll rights reserved.
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For many microstructural processes, different phase-field models
have been developed, all producing simulation results that are of-
ten in good agreement with analytical models or experimental
data. The existence of multiple model formulations and different
definitions of the model parameters is however confusing when
exchanging simulation results or if one wants to integrate the
phase-field technique with other modeling techniques, for instance
in a multi-scale approach.

In this paper, two different phase-field approaches that have
been applied frequently to grain growth are compared, namely
that originating from the work of Chen and Yang [5] and Fan and
Chen [6], which will be referred as the continuum-field (CF) model,
and that originating from Steinbach et al. [7] and Garcke et al. [8],
referred as the multi-phase-field (MPF) model. In both models, a
large set of non-conserved phase fields (or order parameter fields)
is used to represent the different grain orientations. A major dis-
tinction is in the interpretation of the phase fields. In continuum-
field models, the field variables are treated as being independent.
At the diffuse grain boundaries, the variables change monoto-
nously between values without any constraint. In multi-phase-
field models, in contrast, the phase fields are interpreted as volume
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fractions which therefore are subject to the constraint that the sum
of the phase fields must be equal to one at each position in the sys-
tem. Furthermore, the thermodynamic free energy in the contin-
uum-field model has multiple degenerate minima, one for each
grain orientation. The free energy of the multi-phase-field model
has a single minimum for all phase fields equal to zero. It is the
constraint on the sum of the phase fields that forces one of them
to equal 1 within the grains. From a mathematical point of view,
the evolution equations obtained in the two approaches, have
different solutions. The diffuse transitions at interfaces have for
example a different shape [8,9]. Large-scale simulations
[6,10–12] have shown that both models give similar grain growth
behavior with statistics close to those expected from mean field
theories for normal grain growth, if a sufficiently large number of
grains is considered and grain coalescence is avoided [11,12]. The
purpose of this paper is to compare these two phase-field ap-
proaches in more detail. The multi-phase-field and continuum-
field model as formulated in respectively [13] and [14,9] are con-
sidered in particular. First, we compare the model formulation
and derive relationships between the parameters in both models
in Section 2. Numerical aspects and parameter choices are shortly
discussed in Section 3. In Section 4, simulation results for both
models using equivalent parameter values are compared with ana-
lytical models for simple grain geometries and in Section 5, the
growth behavior of individual grains and small grain assemblies
embedded in larger grain structures is studied. Statistical quanti-
ties typically used to characterize grain growth behavior are also
determined and compared with classical theories to analyse the
impact on the overall statistical properties of small deviations on
a local scale. Besides these two approaches, there exist other
phase-field models for multi-grain structures [15,16]. They are
not considered in this study.
2. Model comparison

2.1. Model formulation

We refer to [8,17,13] and [6,18,14,9] for more details on respec-
tively the multi-phase-field and continuum-field models.

In the multi-phase-field model, the Helmholtz free energy func-
tional for a single-phase multi-grain structure is constructed as

F ¼
Z

V
eað/;r/Þ þ 1

e
wð/ÞdV ; ð1Þ

with að/;r/Þ the gradient free energy density, wð/Þ the potential
and / the N-component phase field vector ð/1; . . . ;/a; . . . ;/NÞ repre-
senting N different grain orientations with each component. Follow-
ing the derivation of the model in [17], it must be postulated that
the state variables /a all sum up to unity in each point of space,P

a/a ¼ 1 as well as 0 6 /a 6 1 ða 2 f1 � � �NgÞ, i.e. / lies on a Gibbs
simplex. Therefore, each component /a can be regarded as the vol-
ume fraction of grain a, which is important for ensuring correct en-
ergy contributions in each point of the interface. The energy density
contribution wð/Þ in (1) is chosen to be of a multi-obstacle type
with N sharp defined minima at the bulk phases states
(/a ¼ 1;/bðb–aÞ ¼ 0). In the allowed range for /, wð/Þ calculates as

wð/Þ ¼ 16
p2

X
a<b

cab /a/b þ
X

a<b<d

cabd /a/b/d; ð2Þ

and tends to þ1 when outside the Gibbs simplex. The double sum-
mation in (2) spans all possible a=b combinations with cab the free
energy of the respective a=b-boundary. The second addend in (2)
represents a triple summation of all existing higher order terms
� /a/b/d. This potential modification is necessary to prevent the
spontaneous generation of small contributions of third phases in a
two-phase boundary (‘ghost phases’). For this purpose cabd should
assume a value of about 10 times the greatest surface energy cab

in the system. The gradient free energy density in functional (1)

að/;r/Þ ¼
X
a<b

cab j~qabj2; ð3Þ

is formulated as a function of generalized gradient vectors
~qab ¼ /ar/b � /br/a. This allows to assign different grain bound-
ary energies depending on the angle of misorientation between
neighboring grains. Additionally, a dependancy on the inclination
of an a=b-boundary can be established by letting cab be a function
of ~qab. The evolution of the grain structure is given by a set of N ki-
netic equations for the phase fields /a which are derived by taking
the variational derivative of the free energy

s� @/a

@t
¼ � dF

d/a
� k; ð4Þ

¼ eðr � a;r/a ð/;r/Þ � a;/a ð/;r/ÞÞ � 1
e

w;/a ð/Þ � k; ð5Þ

where the Lagrange multiplier k

k ¼ 1
N

X
a

eðr � a;r/að/;r/Þ � a;/a ð/;r/ÞÞ � 1
e

w;/að/Þ
� �

; ð6Þ

accounts for the restriction
P

a/a ¼ 1. The parameters �, cab and s
are related to physical grain boundary properties (see Section 2.2).

In the continuum-field model for grain growth [14,9], the free
energy functional has the form

F ¼
Z

V
mf0ðga;gb; . . . ;gNÞ þ

j
2

X
a
ðrgaÞ

2dV ; ð7Þ

with f0ðga;gb; . . . ;gNÞ a fourth order polynomial of the phase fields
ðga;gb; . . . ;gNÞ

f0 ¼
X
a

g4
a

4
� g2

a

2

� �
þ
X
a<b

c0abg
2
ag

2
b; ð8Þ

with 2N minima of equal depth (f0;min ¼ �0:25) at ð. . . ;0;�1; 0; . . .Þ
representing N grain orientations. The minima at (. . . , 0,+1 ,0, . . .)
and (. . . ,0,�1,0, . . .) correspond to the same grain orientation. In
this study, we only consider the minimum at (. . . ,0,+1,0, . . .). The
temporal evolution of the phase fields follows an equation of the
form

@ga

@t
¼ �L m

@f0

@ga
� jr2ga

� �
; ð9Þ

for all ga. In order to distinguish between different grain boundary
energies depending on the misorientation between neighboring
grains, the energy gradient coefficient j is formulated as a function
of the phase fields

j ¼

P
a<b

jabg2
ag2

bP
a<b

g2
ag2

b

: ð10Þ

This formulation results in constant values for j at the diffuse
interfaces between different grains. The parameters jab and c0ab

are related to the properties of the interface between grains a
and b. In Section 2.2, it is shown how the parameters m, jab, c0ab

and L relate to physical grain boundary properties.

2.2. Model parameters

For the MPF model considered in this study [13] the parameters
cab equal the specific free energies rab of the grain boundaries be-
tween two grains with orientations a and b, and the parameter e is
a measure for the width of the diffuse interfaces, which will be



Table 1
Conversion formulas for the parameters in the multi-phase-field (MPF) and contin-
uum-field (CF) model (nab ¼ mðgðc0abÞÞ

2, a0 ¼ ð3p=4Þaðc0abÞ).

Multi-phase-field ? continuum-field Continuum-field ? multi-phase-field

jab ¼ a0ecab e ¼
ffiffiffiffiffiffi
jab

nab

q
1
a0

L ¼ 1
a0es

1
s ¼ L

ffiffiffiffiffiffi
jab

nab

q
nab ¼

cab

a0e cab ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jabnab

p
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considered in greater detail in Section 2.3. Furthermore, all grain
boundaries have the same mobility, namely l ¼ 1=s, with s the ki-
netic factor in the MPF Eq. (5).

For the CF model the relation between the grain boundary en-
ergy rab and the parameters in the free energy functional can be
expressed as [9]

rab ¼ gðc0abÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
mjab

p
: ð11Þ

with gðc0abÞ a function that must be obtained by numerical evalua-
tion of the integral

rab ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
mjab

p Z 1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðf0 � f0;minÞ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

dgb

dga

� �2
s

dga; ð12Þ

for different values of c0ab. Furthermore, the product Ljab in the CF
model equals the reduced grain boundary mobility l� ¼ lrab and,
for a fixed value of c0ab, the diffuse interface width is proportional
to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jab=m

p
.

For two-grain structures, the MPF model reduces to a classical
phase-field model with one evolution equation for a single
phase-field variable taking the value 1 within one grain and 0 in
the other, remaining the same relations between model parame-
ters and physical quantities. This is not the case for the CF model.

2.3. Equivalent parameter combinations

From a mathematical point of view, the interpretation of the
field variables is different for both approaches. There exists, there-
fore, no straightforward relation between the phase fields in both
models that transforms one model formulation into the other.
However, it is possible to derive relationships between their model
parameters for given system properties. In the case of grain
growth, for each interface a=b, three parameters in the MPF model
(cab; e and s) must be related to four parameters in the CF model
(m;jab, c0ab and L) so that the grain boundary properties and grain
growth kinetics obtained in the simulations are the same for both
models.

As a first requirement the grain boundary energies rab must be
equal for both model formulations, giving

cab ¼ gðc0abÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
jabm

p
: ð13Þ

Next, in order to have the same grain growth kinetics, the re-
duced grain boundary mobility l� ¼ lrab should be equal, result-
ing in

1
s cab ¼ Ljab; ð14Þ

Although it will be illustrated in Section 4.2 that the profiles of
the phase fields at interfaces are different for both models, (and it
is thus impossible to give the diffuse interfaces exactly the same
width in both models) equivalent sets of model parameters should
result in a ‘comparable’ interfacial width. Therefore, we will re-
quire that the maximum gradient of the phase fields in the direc-
tion perpendicular to the interface is equal in the MPF and CF
simulations. Since the phase-field profiles have their maximum
gradient at the middle of an interface where the profiles of two
phase fields cross, we expect that this equality results in compara-
ble numerical stability and accuracy for both models. In this way,
‘equal interface width’ means equal numerical accuracy and stabil-
ity requirements.

If it is assumed that at an interface only two phase fields differ
from 0, which is approximately the case, the restriction

P
a/a ¼ 1

in the MPF model gives /a þ /b ¼ 1 and r/a ¼ �r/b. The total
free energy density in the functional in Eq. (1) accordingly reduces
to
f ¼ ecabðr/aÞ
2 þ 1

e
wð/a;1� /aÞ: ð15Þ

From this formula, it can be calculated using an integrated form
of the Euler–Lagrange equation that

d/a

dx

����
���� ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð/a;1� /aÞ

e2cab

s
ð16Þ

with x measured along the direction perpendicular to the interface.
Due to the restriction /a þ /b ¼ 1, the phase fields always cross at
/a ¼ /b ¼ 0:5 and accordingly w ¼ ð4=p2Þcab at the middle of the
interface. Therefore

d/a

d x

����
����

� �
max
¼

d/b

dx

����
����

� �
max
¼

ffiffiffiffiffiffiffiffiffiffi
4

p2e2

r
: ð17Þ

For the CF model, the free energy density at interfaces between
two grains equals

f ¼ jab

2
ðrgaÞ

2 þ ðrgbÞ
2

� 	
þmf0ðga;gbÞ; ð18Þ

as there is no restriction that relates the evolution of the two phase
fields. The gradients of the phase fields are given by

dga

dx
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðf0 � f0;minÞ

jab 1þ dgb

dga

� 	2
� �

vuuut and
dgb

dx
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðf0 � f0;minÞ

jab 1þ dga
dgb

� 	2
� �

vuuut :

ð19Þ

From the symmetry of the free energy density (18) with respect
to ga and gb it follows that dga=dgb ¼ dgb=dga ¼ �1 at the middle
of the interface where ga ¼ gb ¼ gint. Therefore

dga

dx

����
����

� �
max
¼

dgb

dx

����
����

� �
max
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðf0;int � f0;minÞ

jab

s

¼ 3
4

aðc0abÞgðc0abÞ
ffiffiffiffiffiffiffiffi
m
jab

r
; ð20Þ

with f0;int ¼ f0ðgintÞ the value of f0 at the middle of the interface,
which depends on the parameter c0ab. The factor aðc0abÞ can be calcu-
lated numerically [9] as a function of c0ab. It is close to 1 for practical
values of c0ab.

From (17) and (20), it follows that in order to have equal max-
imum gradients

1
e2 ¼

9p2

64

m aðc0abÞ
� 	2

gðc0abÞ
� 	2

jab
¼

ma02 gðc0abÞ
� 	2

jab
; ð21Þ

with a02 ¼ ð9p2=64Þðaðc0abÞÞ
2.

Then, equalities (13), (14) and (21) allow to derive relationships
between the parameters in the two phase-field models. In Table 1,
formulas are listed that convert the parameters for one model into
an equivalent set of parameters for the other. For the same set of
parameter values in the MPF model, different combinations of m
and c0ab in the CF model are possible, but nab ¼ mðgðc0abÞÞ

2 is fixed.
The model parameters cabd of the potential energy density wð/Þ
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calibrate the grain boundary energies cab of the MPF model by
avoiding the occurrence of ghost phases. They have no direct phys-
ical interpretation and are therefore not related to any model
parameter in the CF model.

The advantage of the MPF model is that most parameters are di-
rectly related to physical quantities, whereas it requires the
numerical calculation of an integral to relate the model parameters
in the CF model to physical quantities. In the MPF model, on the
other hand, third-order interaction coefficients in the free energy
potential � cabd /a/b/d are required to prevent unwanted phase
fields from contributing at interfaces. Depending on the system
properties, it can be cumbersome to find appropriate values for
these coefficients, as they are not related to a physical quantity.
3. Numerical aspects

In this study, a finite difference discretization with explicit time
stepping was used for the numerical solution of the equations for
both models. A five point central scheme was used to calculate
the Laplacians in the CF Eq. (9). The term r � ð/ar/bÞ in the MPF
equations (5) was calculated as follows. First, the term r/b is cal-
culated using right-sided finite differences and /a is evaluated in
between the grid points on the ‘right’ side of each grid point. Then,
the divergence is calculated using left-sided finite differences.
Application of the latter scheme to the Laplacians in the CF equa-
tions results in the same finite difference equations as obtained
with the central finite difference scheme. In both cases, an equal
grid resolution is assumed for the computations in all spatial direc-
tions, i.e. Dx ¼ Dy ¼ Dz.

For the MPF simulations, grain area A (2D simulations) and vol-
ume V (3D simulations) were determined by summing /aðDxÞ2 or
/aðDxÞ3 over all grid points in the system, with /a the local fraction
of a grain a and Dx the grid spacing. For the CF model, scaled quan-
tities g�a

g�a ¼
g2

aPN
b¼1g2

b

; ð22Þ

representing the fraction of a grain a, were defined. Grain area or
volume can then be calculated as described above for the MPF
simulations, namely by summing g�aðDxÞ2 or g�aðDxÞ3 over all grid
points. The total grain boundary energy in the system is calculated
as

Egb ¼
X

grid points

eað/;r/Þ þ 1
e

wð/Þ
� �

ðDxÞ2; ð23Þ

for the MPF model and

Egb ¼
X

grid points

mðf0 � f0;minÞ þ
j
2

X
a
ðrgaÞ

2
� 	

ðDxÞ2; ð24Þ

for the CF model, respectively. The average grain size of multiple
grain structures was computed as A ¼ Atotal=N with Atotal the area
of the simulation box and N the number of grains. The radius R of
a grain was calculated from the grain area as R ¼

ffiffiffiffiffiffiffiffiffi
A=p

p
or from

the grain volume as R ¼ ð3pV=4Þ1=3.
In this paper, spacial dimensions (Dx, e) will be expressed in

10�6m, time (t, Dt) in s, specific grain boundary energy (rab) in
J=m2 and mobility (l) in 10�6m2 s/kg. The parameter values do
not refer to a particular material, however they are within the
range of values typical for metals. The values for Dx, e are chosen
so that a reasonable accuracy is obtained, while keeping grain
growth simulations for multi-grain structures computationally fea-
sible. The time step Dt was taken as large as possible considering
the stability condition of the explicit finite difference scheme for
a given Dx.
4. Two- and three-grain structures

In this section, simulation results obtained with both models for
two- and three-grain structures in 2D, are compared. The geometry
is chosen so that analytical relations are available as a reference for
the comparison. The profiles of the diffuse transitions in the value
of the phase fields at interfaces are also compared.

4.1. Shrinking circular grain

First, the shrinkage of a circular grain with orientation a within
a matrix with orientation b is considered. Since for curvature dri-
ven motion, the velocity vab of the circular boundary between both
grains is given by

vab ¼ �
dRaðtÞ

dt
¼ l 1

Ra
rab; ð25Þ

with RaðtÞ the radius of grain a at time t, it follows that, with Aa the
area of grain a,

dAa

dt
¼ �2plrab: ð26Þ

The temporal evolution of the area of grain a in the simulations
must thus approach the linear relation

AaðtÞ ¼ Aa;0 � 2plrabt; ð27Þ

with Aa;0 the area of the grain for t ¼ 0. Moreover, the total amount
of grain boundary energy in the system, calculated as
Egb ¼ 2pRarab, as a function of time should follow the relation

EgbðtÞ ¼ 2
ffiffiffiffi
p
p

rab

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aa;0 � 2plrabt

q
; ð28Þ

which is equivalent with

E2
gbðtÞ ¼ E2

gb;0 � 8p2lr3
abt: ð29Þ

In Fig. 1, the temporal evolution of the grain area and total grain
boundary energy obtained with both models using equivalent sets
of parameter values, are compared with the analytical relations
(27) and (29). In Table 2, the relative errors on the rate of shrinkage
of the circular grain in the simulated systems are given for differ-
ent grid spacings Dx and interface widths e. Only simulation data
for Ra � e were considered when measuring the shrinkage rate.
For all three measures, the data lead to the following conclusions.
For both models, the accuracy improves with increasing e=Dx-ratio,
as a higher e=Dx-ratio gives more grid points to resolve the phase-
field profiles at the interface. The accuracy obtained for rab ¼ 0:2
and rab ¼ 0:25 are nearly the same. Differences in accuracy be-
tween both models for fixed simulation parameters are very small
in comparison with the effects of changing grid spacing or interfa-
cial width. For both models, the accuracy of the simulation results
could be improved further by decreasing the grid spacing; however
such small grid spacings are usually not feasible for grain growth
simulations for large grain structures.

4.2. Three-grain structure with triple junction

To compare the grain boundary configurations at triple junc-
tions, simulations were performed using a lamellar geometry as
illustrated in Fig. 2a with rac ¼ rbc, so that the velocity of the grain
boundaries a=c and b=c and the angles at the triple junction are
constant during steady-state motion.

The equilibrium triple junction angle h, as defined in Fig. 2b, can
be calculated using Young’s law with rac ¼ rbc, giving

h ¼ 2 arccos
rab

2rac

� �
: ð30Þ



Fig. 1. Evolution of (a) the area and (b) the total grain boundary energy as a function of time for the shrinking circular grain. Simulation results for the multi-phase-field (MPF)
and continuum-field (CF) model are compared with the analytical relation for two different grid spacings Dx ¼ 0:1 and Dx ¼ 0:2. System parameters: rab ¼ 0:25, l ¼ 1,
� ¼ 0:5, Dt ¼ 0:0075 for Dx ¼ 0:1 and Dt ¼ 0:03 for Dx ¼ 0:2, R0 ¼ 15, ‘1 ¼ ‘2 ¼ 40.
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Furthermore, the Gibbs–Thomson law gives that the velocity of
the grain boundaries a=c and b=c equals
Table 2
Shrinkage rate dAa=dt for the shrinking circular grain for different grid spacings Dx
and diffuse interface widths e. The relative errors are indicated in percentage. System
parameters: rab ¼ 0:25 (except for � where rab ¼ 0:2), l ¼ 1, Dt ¼ 0:0075 for
Dx ¼ 0:1 and Dt ¼ 0:03 for Dx ¼ 0:2, R0 ¼ 15 and ‘1 ¼ ‘2 ¼ 40.

e Dx dAa=dt

Anal. MPF CF

0.5 0.2 1.57 1.51 (4.1%) 1.52 (3.2%)
1 0.2 1.57 1.56 (0.6%) 1.56 (0.6%)
0.5 0.1 1.57 1.56 (0.8%) 1.56 (0.7%)
1 0.1 1.57 1.57 (<0.1%) 1.57 (<0.1%)
1� 0.1 1.26 1.26 (<0.1%) 1.26 (<0.1%)

Fig. 2. (a) Diffuse interface representation of the studied three-grain structure during s
junction angle. R is the radius of a circle fitted through the contour g�a ¼ 0:5 or /a ¼ 0:5. T
width of a lamella. (c) Contour lines for g� or / equal to 0.5 and 0.33 near the triple juncti
dividing the system into different regions depending on which phase field has the high
vac ¼ vbc ¼ �lrac
1
R
¼ �lrab

2x1
: ð31Þ

The shrinkage of the area of grain a can accordingly be calcu-
lated as

dAa

dt
¼ 2x1vac ¼ �lrab and AaðtÞ ¼ Aa;0 � lrabt: ð32Þ

Assuming that the grain boundaries a=c and b=c maintain con-
stant curvature during grain boundary movement and that the tri-
ple junction angles adapt instantaneously to grain boundary
movement, the triple junction angle h was derived from the curva-
ture of the grain boundaries in the simulations as follows. First a
circle was fitted through the contour /a ¼ 0:5 or g�a ¼ 0:5. The an-
gle h was then obtained from
teady-state grain boundary motion. (b) Construction used to determine the triple
he triple junction angle h can be calculated from h ¼ 2 arccosðx1=RÞ with x1 half the

on and the separation line for grain a in a sharp interface representation obtained by
est value.
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R ¼ x1

cos h
2


 � ) h ¼ 2 arccos
R
x1

� �
; ð33Þ

with h, R and x1 as indicated in Fig. 2b. As illustrated in Fig. 2c, the
curvature of the contour lines for constant value of /a or g�a deviates
from that of the grain boundary near the triple junction. Therefore,
points within a distance of approximately 1:5e from the triple junc-
tion were omitted for the fitting. Although the results are somewhat
sensitive to the number of grid points actually used in the fit and to
the contour line for which the fit is made, this technique gives a
fairly good indication of how well the expected triple junction an-
gles are reproduced in the simulations. Beside this, we also deter-
mined the shrinkage rate of the grains a and b, which is an
indirect measure of how well the triple junction angle is repro-
duced. It namely follows from relations (31) and (32), that a devia-
tion of the triple junction angle results in a change of the shrinkage
rate. Since the contour lines deviate from the actual grain boundary
curve near the triple junction, it is also not possible to calculate
accurately the angles between the boundaries at triple junctions di-
rectly from the values of the phase fields and their gradients.

Values for the triple junction angle h and shrinkage rate dAa=dt,
obtained for different ratios of the specific grain boundary energies
rab=rac, for different grid spacings and interfacial widths e, are
compared with the theoretically expected values for both models
in Table 3. The data were measured when grain boundary move-
ment was steady-state (for some configurations it requires long
time and a large system to reach steady-state).

For the considered grid spacings and interface widths, the triple
junction angles and shrinkage rate obtained in the simulations are
mostly close to the theoretical values, except for h around 90�. As
for the circular grain, the accuracy mainly depends on the ratio
e=Dx. Differences between the data obtained for both models are
of the same order as the errors on the data. There is no clear sys-
tematic deviation between the data obtained for both models.
For both models, a much finer grid spacing is required to reproduce
the small triple junction angles (h 6 90	) well. For these angles, the
results are more sensitive to the details of the measuring technique
and may differ slightly when evaluated at different time steps.
These difficulties with representing and measuring small angles
are probably inherent to the discretized representation. Simula-
tions for a system size twice as large give nearly the same values
for the triple angles and shrinkage rates, which indicates that the
Table 3
Equilibrium angle at the triple junction and temporal evolution of the area of grain a fo
boundary energy ratios rab=rac , different grid spacings Dx and different interface widths

r Dx, e h

Anal. M

rab ¼ rac ¼ rbc ¼ 0:25 Dx ¼ 0:1 120� 1
e ¼ 0:5

rab ¼ rac ¼ rbc ¼ 0:25 Dx ¼ 0:2 120� 1
e ¼ 1:0

rab ¼ 0:25, rac ¼ rbc ¼ 0:2 Dx ¼ 0:1 103� 1
e ¼ 0:5

rab ¼ 0:25, rac ¼ rbc ¼ 0:2 Dx ¼ 0:2 103� 1
e ¼ 1:0

rab ¼ 0:2, rac ¼ rbc ¼ 0:25 Dx ¼ 0:2 133� 1
e ¼ 0:5

rab ¼ 0:25, rac ¼ rbc ¼ 0:175 Dx ¼ 0:2 89� 8
e ¼ 1:0

rab ¼ 0:175, rac ¼ rbc ¼ 0:25 Dx ¼ 0:2 139� 1
e ¼ 1:0

rab ¼ 0:25, rac ¼ rbc ¼ 0:36 Dx ¼ 0:2 139� 1
e ¼ 1:0
lower accuracy for small triple junction angles is probably not
introduced by the diffuse character of the boundaries.

In Fig. 3, the profiles of the phase fields across the grain bound-
aries between grains a and b and between grains a and c (their
spacial resolution along a line perpendicular to the boundary) are
compared. The slopes of the profiles at the middle of the interfaces
are equal for both models, but the shape of the profiles shows some
differences. For the MPF model, the profiles are symmetrical and
the phase fields always equal 0.5 at the middle of the interface.
In the CF model, the value at which ga and gb intersect depends
on the coefficient cab0 and differs for boundaries with a different
energy (compare plot (a) and (b)). The multi-obstacle potential in
the free energy of the MPF model (2) also results in an interface re-
gion that is defined more strictly, whereas the free energy in the CF
model leads to more diffuse profiles.

5. Multi-grain structures

Except from the fact that the phase-field profiles at the interface
have a different shape, the two models do not show significant dif-
ferences in grain boundary migration for the test configurations
considered in the previous section. In this section, both models
are applied to normal and textured grain growth in limited 2D
and 3D grain assemblies. Three cases will be considered, namely
normal grain growth in 2D with r ¼ 0:25 and l ¼ 1 for all grain
boundaries, normal grain growth in 3D with r ¼ 0:25 and l ¼ 1
and grain growth in a 2D systems with two texture components
and accordingly two types of boundaries. For the latter case, the
grain structure is assumed to consist of two types of grains, A
and B, as shown in Fig. 4b. Grain boundaries between grains of
the same type have a grain boundary energy rAA ¼ rBB ¼ 0:20
and those between grains of a different type have rAB ¼ 0:25.
The grain boundary mobility of all grain boundaries equals l ¼ 1.

The initial structures were obtained by dividing domains of
502
 502 (2D) or 202
 202
 202 (3D) grid points into 75 grains
according to a Voronoi diagram based on a random set of 75 points
and assuming periodic boundary conditions. For the 2D simula-
tions, the Voronoi structure evolved for 6000 time steps using
the simulation parameters given below and r ¼ 0:25 and l ¼ 1
for all boundaries. The resulting structure, an ensemble of 71
grains with triple junction angles of 120�, was then used as the
start configuration for continuing the 2D simulations. The 3D sim-
r the MPF and CF model are compared with the analytical value for different grain
e. cabd in the MPF potential is 3.0 for all cases.

dAa=dt

PF CF Anal. MPF CF

19� 119� 0.25 0.26 0.26
(2.8%) (4.0%)

19� 118� 0.25 0.26 0.26
(2.8%) (4.3%)

00� 105� 0.25 0.26 0.25
(6.0%) (1,1%)

00� 104� 0.25 0.26 0.25
(6.0%) (0.2%)

35 133� 0.20 0.19 0.20
(5.9%) (0,1%)

4� 97� 0.25 0.27 0.24
(8.9%) (4,7%)

39� 139� 0.175 0.174 0.173
(0.6%) (0.8%)

39� 139� 0.25 0.25 0.24
(0.6%) (0.8%)



Fig. 3. Comparison of the phase-field profiles at the interfaces for the three-grain structure with rab ¼ 0:25 and rac ¼ rbc ¼ 0:2 for steady-state grain boundary movement.
(a) Profiles across the immobile interface between grains a and b. (b) Profiles across the moving interface between the grain a and c. System parameters: l ¼ 1, e ¼ 1,
Dx ¼ 0:2, ‘1 ¼ ‘2 ¼ 40.

Fig. 4. Initial grain structures used in this study. (a) Normal grain growth in 2D. (b) Grain growth in a 2D structure with two types of grains, labeled A (light green) and B (dark
red). (c) Normal grain growth in 3D. (d) 2D-section of the 3D structure in (c). The evolution of the grains indicated with a bold contour is compared in detail in the next
section. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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ulations started from a 3D Voronoi structure with arbitrary triple-
junction angles and flat grain boundaries. The initial structures for
the three cases are shown in Fig. 4. A grid spacing of Dx ¼ 0:2, time
step Dt ¼ 0:03 for 2D and Dt ¼ 0:015 for 3D, and diffuse interface
width of e ¼ 1 were used, giving a total system size of
‘1 ¼ ‘2 ¼ 100:4 for the 2D systems and ‘1 ¼ ‘2 ¼ ‘3 ¼ 40:4 for the
3D system. The coefficients cabd in the MPF potential were equal
to 3.0 for the 2D systems and 2.25 for the 3D system. From the re-
sults in Section 4.2, we expect that a ratio e=Dx ¼ 5 gives reason-
ably accurate simulation results for both models. For all
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simulations, the contours / ¼ 0:5 or g� ¼ 0:5, the size and number
of neighbors were determined for all grains at every 1000 time
steps. First, the evolution of individual grains in these multi-grain
structures is compared for both models. Then, the statistics of the
grain structures are compared with mean field theories and those
obtained from previous simulations for grain growth. The number
of grains considered in the simulations is too small to obtain reli-
able grain growth statistics. The goal is however to compare the
behavior of the individual grains and to study to which extend
deviations affect the evolution of the surrounding grain structure.
5.1. Evolution of individual grains

In the Figs. 5 and 6, the evolution of the selected grains in the CF
and MPF simulations is compared in detail for the 2D structure
with A and B grains and the 3D structures with equal grain bound-
ary energies by plotting the contour / ¼ 0:5 or g� ¼ 0:5 for each
grain. The overall evolution of the grain assembly is the same for
both models. Near disappearing grains, larger deviations between
the position of the grain boundaries occur locally and for a short
time period in both simulations. Disappearing grains have the ten-
dency to shrink faster in the CF simulations than in the MPF simu-
lations. Once a grain has disappeared, the contours match well
again. The first pictures in Fig. 6 show that it takes more time in
the MPF-simulation for the structure to evolve from the initial
Voronoi configuration with highly non-equilibrium triple-junction
angles and straight grain boundaries towards a typical grain con-
figuration. The evolution temporarily follows a slightly different
path. After some time the contour plots match, except around dis-
appearing grains. This difference must be due to the different form
of the free energy used in both models and not due to a different
mobility or drag effect of the triple junctions. Once the triple junc-
tions have a configuration close to that required for thermody-
namic equilibrium and the boundaries have obtained their
curvature, the triple junctions no longer affect the grain growth
kinetics. For none of the models, the triple junctions drag the
boundaries when they are close to equilibrium.

In Fig. 7, the volume and number of faces as a function of time is
plotted for a longer time period for the selected grains in the 3D
case. Although the evolution of the volumes of the grains is not ex-
actly the same in both simulations and the grains do not undergo
exactly the same neighbor switching events, the curves for one
grain do not diverge. When the behavior deviates at a certain point,
it recovers again after some time. The attraction towards a partic-
ular growth regime with, for example steady-state grain growth
characteristics, seems to be so strong that deviations in the behav-
ior of individual grains cannot amplify or disturb the overall
growth behavior. This observation can be generalized to other
Fig. 5. Grain contours at / ¼ 0:5 and g� ¼ 0:5 for different time steps of the selected g
simulations for the structure with two types of grains. Images from left to right are for
mesoscale simulation techniques of grain boundary motion as well
as to grain growth in real systems.

The curves in Fig. 7 illustrate that the evolution in the MPF-sim-
ulations is slower. A combined consideration of the images and the
contour plots in Fig. 6 reveals that in fact only the smallest grains
evolve faster in the CF simulations, while the contour lines for
boundaries far from a disappearing grain for both models match
well. The faster disappearance of the smallest grains in the CF sim-
ulations induces an earlier transition in the number of faces and
growth behavior of the grains in its environment.

There are several reasons for the small variations between the
simulation results obtained with both phase-field approaches. An
important factor is the use of a different free energy potential. As
illustrated in Fig. 3, the double-obstacle potential in the MPF free
energy results in transitions of the phase fields within a well-de-
fined interfacial region whereas the free energy in the CF model
causes transitions with a longer tail. For both models, the width
of the interfaces is taken wider than the physical grain boundary
width and the grain boundary profiles therefore interact over a
large distance. Due to the longer tails, the phase-field profiles in
the CF simulations interact over a greater distance than in the
MPF simulations. Furthermore, an algorithm using a locally re-
duced number of phase fields, similar to the procedure given in
[12], was used for the MPF simulations for multi-grain structures.
This algorithm calculates only the values of a limited number of
phase fields, namely those with the highest values, at each grid
point, whereas the full set of equations is solved for all phase fields
in the CF simulations. It was shown in [12] that a reduction in the
number of phase fields considered at each grid point may retard
the disappearance of small grains. The differences result in a faster
shrinkage rate for small grains in the CF simulations and a slower
adaptation of triple junctions far out of equilibrium in the MPF. If
desirable, the shrinkage rate of small grains in the CF model can
be reduced by using a smaller interface width. This requires a
smaller grid spacing to maintain numerical stability and accuracy.
The reaction of triple junctions in the MPF model can be enhanced
either by using a larger interface width, by a smaller grid spacing or
by considering more phase fields at each grid point in the sparse-
data structure algorithm. It will be shown in the following subsec-
tion, however, that the detailed characteristics of individual grains
on the local scale have almost no effect on the grain growth kinet-
ics of the full system. This was also shown in the results from large-
scale phase-field simulations [6,10–12].

5.2. Comparison with mean field theories and previous simulation
results

In Fig. 8, the growth rate obtained for grains of different topo-
logical classes, i.e. with a defined number of sides (2D) or faces
rains in the 2D structures (indicated in bold in Fig. 4) obtained from MPF and CF
times t ¼ 150;300, 600 and 900 (first row) and 1200, 1500 and 1800 (second row).



Fig. 6. Grain contours (at / ¼ 0:5 and g� ¼ 0:5) for different time steps of the grains in the selected section of the 3D simulation with uniform grain boundary properties.
Images from left to right are for times t ¼ 7:5;15, 30 and 90 (first row) and 150, 225 and 450 (second row).
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(3D), are compared with analytical theories for normal grain
growth, for 2D and 3D with equal grain boundary energies. The
data were obtained for grains remaining in the same topological
class for at least 5000 time steps of which the first and last 500
time steps are omitted. For the 3D application, the first 10,000 time
steps, where the triple-junctions are not in equilibrium and grain
Fig. 7. Evolution of (a) the grain volume and (b) the number of sides for the selected
grains in the 3D simulation for the CF (full line) and MPF (dashed line) model.
boundaries do not have their expected curvature, are omitted as
well.

The von Neumann-Mullins relation for ideal grain growth in 2D
states that the growth rate of a grain with n sides equals [19,20]

dA
dt
¼ p

3
lrgbðn� 6Þ ¼ kNMðn� 6Þ: ð34Þ

This law is valid for any connected grain structure with equal
grain boundary energies and, accordingly, angles of 120� at triple
junctions, but does not require steady-state grain growth or a par-
ticular grain size distribution. It is thus valid for our simulation
systems. The data points in Fig. 8a show that the von Neumann-
Mullins relation is indeed very well reproduced by both models.
Fitting a linear relation through the data points gives a slope equal
to 0.266 for the CF simulations and 0.256 for the MPF simulations,
whereas a slope equal to 0.262 is expected from relation (34). In
accordance with the observations discussed in Section 5.1, growth
(n > 6) and shrinkage (n < 6) are slightly faster in the CF than in
the MPF simulations. The values of the slopes demonstrate that
this effect is negligibly small, especially if one is interested in the
average growth kinetics of a large grain structure.

In 3D, the growth rate of a grain does not solely depend on its
number of faces, but also on its shape. Assuming all grain faces
are pentagons, Mullins [21] derived an approximate relation for
the average growth rate of grains with a given number of faces nf :

1
R

dV
dt

� 
¼ MrgbFðnf ÞGðnf Þ; ð35Þ

with

Fðnf Þ ¼ p=3� 2 arctan½1:86ðnf � 1Þ1=2
=ðnf � 2Þ�; ð36Þ

and

Gðnf Þ ¼ 5:35n2=3
f

nf � 2

2ðnf � 1Þ1=2 � 3=8Fðnf Þ
 !�1=3

: ð37Þ

A similar relation was obtained by Hilgenfeldt et al. [22] using
different assumptions about the shape of the grains and faces. A
simplification of the exact relation for the growth rate of individual
grains in ideal 3D grain structures, derived by MacPherson and
Srolovitz, leads to an equivalent dependence for the average
growth rate on the number of faces [23]. This relation is derived
assuming triple junction angles close to 120�, but does not assume
steady-state grain growth, and should thus apply for the later time
steps of the 3D simulations. Fig. 8b shows that our simulation data



Fig. 8. Growth rates of grains of different topological classes determined at different time steps from the CF and MPF simulations for the (a) 2D and (b) 3D cases with equal
grain boundary energies. The data points are compared with the von Neumann–Mullins relation (34) for 2D (dashed line) and with the approximate Mullins relation (35) for
3D (solid line).
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are somewhat below the analytical curve (35), as is also the case
for data obtained using a vertex model approach [24], from simu-
lations with the Surface Evolver software [25] and on the basis of
phase-field computations for larger systems [12]. There is no sig-
nificant difference between the data points obtained from the CF
and MPF simulations.

Although the number of grains in our simulations does not al-
low a derivation of statistical properties, the 2D and 3D simula-
tions with equal grain boundary energies show a parabolic
growth behavior over a certain time period. In Fig. 9a and b, the
evolution of the average grain size as a function of time is plotted
for time steps within this period. Curves obtained from mean field
theories and from large-scale normal grain growth simulations are
additionally considered for comparison. Mullins’ law [26] predicts
a parabolic growth rate according to

R2ðtÞ ¼ R2ð0Þ þ 2blrgb t; ð38Þ

with 2b ¼ 0:4 for 2D systems and 2b ¼ 0:5 for 3D systems. The 2D
phase-field simulations of Fan and Chen [6] were performed using
a CF type of phase-field model. 3D phase-field simulations of nor-
mal grain growth have been performed by Krill and Chen [11] using
a CF type of model, and by Kim and Kim [12] using a MPF type of
model. For the 2D case, the growth rate obtained in the CF and
MPF simulations is much lower than that predicted by Mullins
[26] and that obtained with 2D vertex simulations [27]. Our data
points obtained for both models are close to the curve obtained
by Fan and Chen [6] for steady-state grain growth in larger grain
structures. For 3D, there is better agreement on the value of b.
Fig. 9. Comparison of the evolution of the average grain size squared R2
av in the (a) 2D an

The analytical relations R2
av � R2

av;0 ¼ 2blrgbt with 2b ¼ 0:4 for 2D and b ¼ 0:5 for 3D fro
models (from [27] for 2D and from [24] for 3D) and using phase-field models (from [4]
Although the presented data points are very scattered due to the
limited number of grains in the system, the overall growth behavior
follows that predicted by large-scale simulations. The comparison
of the data obtained from the considered phase-field approaches
indicates that the growth behavior in ideal systems is unsensitive
for small variations of the local behavior of individual grains. As
long as there are enough grains in the system, local changes level
out in time without affecting the overall growth kinetics.

In Fig. 10, results for grain growth in the system with A and B
grains and two different grain boundary energies are shown. Both
models give again very similar results, except that changes in the
average properties of the system tend to be slightly earlier for
the CF than for the MPF simulations. The contour plots in Fig. 5
show that there are in fact only differences around vanishing
grains. We expect accordingly that the effect on the statistics of a
grain structure is also negligible for systems with a large number
of grains and over an extended period of grain growth. For both
models, the initial growth rate for the two types of grains until
t ¼ 500 is almost the same as in the 2D simulation with equal grain
boundaries. In this regime, grain growth is thus clearly governed
by the high energy boundaries, or more specifically by the disap-
pearance of grains with mainly high energy boundaries. The rela-
tive number of type B grains also increases considerably, because
in the initial structure the grains of type A have on average bound-
aries with slightly higher energy than the type B grains. After the
initial period, the average growth stagnates for some time; fol-
lowed by a regime with again close to parabolic growth. The aver-
age grain size for both types of grains follows closely the overall
d (b) 3D simulations with equal grain boundary energies for the PFM and CF model.
m [26] are added for comparison. Relations obtained from simulations using vertex
for 2D and from [12] for 3D) are also added.



Fig. 10. Evolution of the (a) average mean grain size and (b) relative fraction of each type, as a function of time for the case with two types of grains for the CF and the MPF
model. The evolution of the mean grain size is compared with that for the 2D case with equal grain boundaries (normal grain growth). The evolution of the average grain size
of each type of grains follows approximately that of the overall mean grain size.
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mean grain size. Although, the described step-wise growth with
strengthening of the major texture component in the growth peri-
ods has been observed before for structures with two texture com-
ponents in 2D [28–33] and 3D [34], it remains a challenge for
further investigations whether this effect is recovered for large
grain structures. It is clear that besides the fully steady-state grain
growth observed for pure systems with equal grain boundary
properties, this step-wise growth can accommodate as well for
the small deviations in behavior of disappearing grains.

6. Conclusions

Different phase-field approaches have been proposed in litera-
ture to simulate grain growth on the mesoscale, using different
model variables, model parameters and formulations of the ther-
modynamic free energy. Although the final evolution equations
differ between different approaches, for many of them it has been
shown that they are able to reproduce established mean field and
statistical theories for normal grain growth in large grain struc-
tures. However, it was never verified rigorously whether the evolu-
tion of individual grains and grain boundaries is identical and how
small local variations influence the overall grain growth kinetics.

We have compared in detail the model formulations and their
application for two phase-field approaches of grain growth. Simu-
lations were performed for simple two- and three-grain structures,
for structures with a limited number of grains, and for different
values of the grain boundary energies. The effect of the diffuse
interface width and discrete grid spacing on the numerical results
was studied as well. For equivalent model parameter combina-
tions, the differences between the simulation results obtained with
both models are smaller than effects from changing the grid spac-
ing or interface width. Though, the shrinkage rate of small grains in
the multi-grain structures is different for both models and accord-
ingly around these small grains, there are locally large discrepan-
cies in the grain structure. These deviations are of temporary
kind and only affect the shape of the nearest neighboring grains.
Once the small grain has vanished, the structures match well again
after a short evolution time. If the simulation starts from a struc-
ture with triple junction angles far from those required for thermo-
dynamic equilibrium, as for a grain structure generated according
to a Voronoi diagram, there are temporarily large differences in
the evolution of the grain structures. This is due to the different
form of the free energy functional used in both approaches. The
structures however match quickly once the triple junction angles
are close to those required for thermodynamic equilibrium in both
simulations.
In our simulations for multiple grain configurations, the sys-
tems were evolving towards a regime with steady-state grain
growth characteristics and showed a step-wise growth changing
between two characteristic growth regimes in the case of two dif-
ferent types of grain boundaries. The tendency to evolve towards
such regimes is so strong that small fluctuations in the shape of
individual grains are annihilated after a limited time of grain
growth and hardly affect the overall properties of grain growth.
This last conclusion is generally true for other mesoscale simula-
tion techniques of grain growth, and seems to reflect a natural
organizing principle. If the grain structure contains impurities or
if the grain orientation, grain size distributions or grain boundary
characteristics are very inhomogeneous, there might not be such
a regime of attraction towards which the system is redirected
when the behavior of an individual grain deviates. A better under-
standing of the atomic mechanisms by which grains disappear and
triple junctions rearrange is required to validate the models more
quantitatively with respect to such phenomena.

We conclude that generally grain growth in bulk materials is
mainly determined by the energies and mobilities of the grain
boundaries. In most applications, the overall growth behavior is
not affected by small deviations in the behavior of individual grains
or grain boundaries. Both phase-field approaches are therefore
suitable to study the statistics and mean field characteristics of
grain growth in bulk materials, even if they do not result in iden-
tical dynamics for vanishing grains.
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