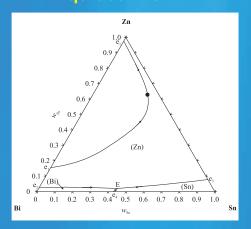


Bi-In-Sn-Zn system for lead-free soldering



N. Moelans⁽¹⁾, K.C. Hari Kumar⁽²⁾, P. Wollants⁽¹⁾ Departement Metaalkunde en Toegepaste Materiaalkunde, KULeuven, Belgium ⁽²⁾Dept. Metallurgical and Materials Engg., IIT Madras, Chennai 600 036, India

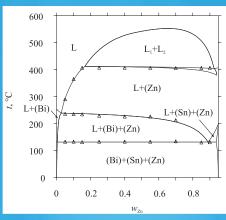
Liquidus Bi-In-Sn

Liquidus Bi-Sn-Zn

Thermodynamic descriptions for the four ternary subsystems are optimized using the CALPHAD method and combined to obtain a description for the quaternary Bi-In-Sn-Zn

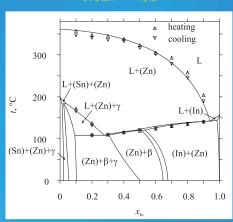
Binaries

D.Boa → Bi-In


B.-J. Lee \longrightarrow D: $S_n \to S_n^* \to T_n$

D.V. Malakhov --- Bi-Zn

S. Fries \longrightarrow Sn-Zn*


* Some expressions were reoptimized to make all binaries compatible

Isopleth Bi-Sn-Zn $w_{sa}=0.05$

Experimental data from:

Vertical section In-Sn-Zn Sn/Zn = 1/2

Experimental data from : Y. Xie. Berich. Bunsen Gesellsch., 102, p 1334, 1998.

All quaternary reactions involving the liquid are calculated

→ lowest melting point in the Bi-In-Sn-Zn system :

Eutectic reaction : L \leftrightarrow (Zn)+Bi₃In₅+ β + γ

Temperature: 56.60 °C

Composition (wt.%): 35.4 Bi; 48.2 In; 48.2 Sn; 0.4 Zn