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Abstract

The aimed properties of the interpolation functions used in quantitative phase-field models for two-phase systems do not extend to
multi-phase systems. Therefore, a new type of interpolation functions is introduced that has a zero slope at the equilibrium values of the
non-conserved field variables representing the different phases and allows for a thermodynamically consistent interpolation of the free
energies. The interpolation functions are applicable for multi-phase-field and multi-order-parameter representations and can be com-
bined with existing quantitative approaches for alloys. A model for polycrystalline, multi-component and multi-phase systems is formu-
lated using the new interpolation functions that accounts in a straightforward way for composition-dependent expressions of the bulk
Gibbs energies and diffusion mobilities, and interfacial free energies and mobilities. The numerical accuracy of the approach is analyzed
for coarsening and diffusion-controlled parabolic growth in Cu–Sn systems as a function of R/‘, with R grain size and ‘ diffuse interface
width.
� 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Many materials are multi-component alloys and consist
of several grains and phases. Their macroscopic properties
and reliability depend greatly on the microstructure and its
evolution in time. It has been shown extensively that the
phase-field technique is capable of dealing in a phenomeno-
logical, and more and more quantitative, way with the
complex processes and morphologies involved in micro-
structure evolution [1–6].

To allow for quantitative three-dimensional microstruc-
ture simulations on meso- and microlength scales, thin-
interface phase-field models have been developed that allow
us to increase the diffuse interface width and to decrease the
computational cost without affecting other system proper-
ties. A first step in the development of quantitative phase-
field models was the decoupling of bulk and interfacial free

energy, as proposed by Tiaden et al. [7,8] and Kim et al. [9]
for multi-component alloys and by Karma and Rappel [10]
for pure materials. A next step was the addition of a
non-variational anti-trapping current to decouple bulk
and interface kinetics, introduced by Karma [11] and worked
out by Echebarria et al. [12] and Ramirez et al. [13] for
binary dilute alloys with negligible diffusion in the solid.
The anti-trapping current has been generalized to non-dilute
multi-component alloys by Kim [14].

The interpolation functions introduced for two-phase
systems, however, do not generalize to multi-phase sys-
tems. The function h(/) = /3(10 � 15/ + 6/2), for exam-
ple, is frequently used to interpolate between the bulk
free energies of a liquid and solid phase fL and fS (expressed
in J m�2), giving fb = h(/)fL + (1 � h(/))fS (with / = 1
representing the liquid and / = 0 the solid). A straightfor-
ward generalization to multi-phase-field models, e.g. that
of Steinbach et al. [15] with /i = 1 and /j = 0, "j – i repre-
senting phase i and

P
i/i ¼ 1, would give a bulk free energy

of the form fb ¼
P

hið/iÞf i, which is thermodynamically
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inconsistent since
P

ihið/iÞ – 1 in multi-junctions. There-
fore an interpolation function of the form hi(/i) = /i is
often used in multi-phase-field models [6], although it shifts
the local minima of the total free energy and may thus
introduce inaccuracies, which are difficult to control.

Folch and Plapp [16,17] have formulated a free energy
functional for three-phase systems with interpolation func-
tions gi(/1, /2, /3), i = 1. . .3 that are polynomials of the
fifth-order in the phase fields. The interpolation functions
allow for a thermodynamic consistent interpolation
between the free energies of the three coexisting phases
and keep the local minima of the free energy at their
intended positions. They have also shown, however, that
in order to satisfy all requirements for a quantitative
phase-field model the order of the interpolation polynomial
has to increase with the number of phases, making a gener-
alization to multi-phase structures practically unfeasible.

Besides multi-phase-field representations, multi-order-
parameter representations are frequently used, such as that
of Chen and Yang [18] for polycrystalline structures and that
of Khachaturyan [19] for ordered precipitates. Order param-
eters are not interpreted as fractions; consequently, their val-
ues do not necessarily sum up to 1. Multi-order-parameter
models have been combined with the thin-interface
approach for multi-component alloys, e.g. by Zhu et al.
[20], and with the thin-interface approach for dilute binary
alloys, e.g. by Ofori-Opoku and Provatas [21]. However,
these approaches do not extend to multi-phase systems.

The purpose of this paper is to introduce and validate a
new type of interpolation function for quantitative phase-
field modeling for multi-phase systems. In Section 2, a
quantitative phase-field model for coarsening and diffu-
sion-controlled growth in polycrystalline multi-component
and multi-phase systems is formulated using the new inter-
polation functions, and relations between the model
parameters and physical properties are derived. The quan-
titative accuracy of the approach is validated for four basic
microstructural configurations involving coarsening and
diffusion-controlled parabolic growth in Section 3. In Sec-
tion 4, the main findings of the presented work are summa-
rized and further applications for the interpolation
functions are mentioned. The numerical validation is lim-
ited to binary systems with a parabolic composition depen-
dence of the bulk free energies, to allow for simple criteria
that can be used as a rule of thumb when designing a
phase-field simulation. Further validation for multi-com-
ponent systems with arbitrary composition dependence is
in progress. However, the parameter space in those systems
is much larger and the conclusions are more complex.

2. Model and multi-phase interpolation functions

2.1. Variables, conditions and free energy functional

A system of C components (k = 1. . .C) and n phases
(q = a, b, . . .) is considered. The pressure, temperature and
molar volume of the system are assumed to be constant.

For each phase q,pq crystallographic orientations are distin-
guished (i = 1. . .pq), with pq infinite in the limit of a contin-
uous grain orientation representation but practically
determined by the resolution with which grain orientations
are represented [22]. The driving forces and gradients in
the properties are considered to be relatively small, such that
the assumption of local thermodynamic equilibrium is
applicable.

The phases and grains are represented by a set of non-
conserved order-parameter fields, which are functions of
time t and spatial coordinates r

g ¼ ðga1ðr; tÞ; ga2ðr; tÞ; . . . ; gapa
ðr; tÞ; gb1ðr; tÞ; . . . ;

gbpb
ðr; tÞ; . . . ; gq1ðr; tÞ; . . . ; gqpq

ðr; tÞ . . .Þ ¼ ðga; gb; . . . ; gq . . .Þ ð1Þ

The first symbol in the indices, a,b,. . .,q,. . ., refers to the
different phases and the second, i = 1. . .pq, to the different
crystallographic orientations of each phase. It is assumed
that a particular “phase structure/orientation” combina-
tion “q, i” is represented by the combination of order
parameter values in which gq,i = 1 and gr,j = 0 for [r, j]
– [q, i]. Across the grain interfaces, the order parameters
change value smoothly and monotonously.

Conserved fields representing the local molar fractions
of C � 1 independent components are also used

x ¼ ðx1ðr; tÞ; x2ðr; tÞ; . . . ; xkðr; tÞ; . . . xC�1ðr; tÞÞ ð2Þ
The total free energy Ftot of the system is formulated as

a functional of the order-parameter fields g and molar-frac-
tion fields x, as

F totðg; xÞ ¼ F sðg; xÞ þ F bðg; xÞ ¼
Z

V
fsðg; xÞ þ fbðg; xÞdV ð3Þ

with decoupled contributions for bulk (fb) and interfacial
(fs) free energy. The interfacial free energy for polycrystal-
line structures recently introduced by the author [23,24] is
extended to multi-phase systems in Section 2.2. In Section
2.3 a bulk free energy is derived, starting from the thin-
interface approach of Tiaden et al. [7,8] and Kim et al.
[9], but using a different type of function to interpolate be-
tween the free energies of the different phases.

2.2. Interfacial free energy functional

Applying the free energy functional derived in Refs.
[23,24] for the full set of order-parameter fields (1) gives

fs ¼ mf0ðgÞ þ
jðgÞ

2

X
q

Xpq

i¼1

ðrgqiÞ
2 ð4Þ

with f0 a fourth-order Landau polynomial of the order
parameters

f0ðgÞ ¼
X

q

Xpq

i¼1

g4
qi

4
�

g2
qi

2

" #

þ
X

q

Xpq

i¼1

X
r

Xpr

j¼1;qi–rj

cqi;rjðwqi;rj; ~lÞ
2

g2
qig

2
rj

" #
þ 1

4

ð5Þ
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and where
P

q

P
i indicates a sum over all possible orienta-

tions of all phases and
P

q

P
i½
P

r

P
j;qi–rj� the sum over all

possible combinations of order parameters twice, excluding
those with two times the same order parameter. The func-
tion f0 is minimal and equals zero for (. . ., gq,i, . . .) =
. . ., (. . ., 0, 1, 0, . . .), . . ., corresponding to all possible
“phase structure/orientation” combinations “q, i”. The
gradient coefficient j is formulated as a function of the or-
der parameters proposed by Kazaryan et al. [25]

jðgÞ ¼
P

q

Ppq

i¼1

P
r

Ppr
j¼1;rj–qijqi;rjðwqi;rj; ~lÞg2

qig
2
rj

h i
P

q

Ppq

i¼1

P
r

Ppr
j¼1;rj–qig

2
qig

2
rj

h i ð6Þ

Assuming that at each interface only the two order
parameters representing the adjacent grains differ from 0
(which is true if the dependence of the model parameter
j on gqi is ignored when deriving dF s=dgqi in Eq. (16)
(see also Ref. [5], section III E) or for ji,j = j, "i, j), it
can be verified that at the interface between grains ‘qi’
and ‘rj’, j = jqi,rj in Eq. (6) and only the term cqi;rjg

2
qig

2
rj

remains in the sum of cross products in Eq. (5). The free
energy and width of an interface ‘qi, rj’ is thus determined
by cqi,rj and jqi,rj. The inclination dependence of the inter-
facial free energy can be introduced by formulating the
model parameters cqi,rj(wqi,rj) and ji,j(wqi,rj) as a function
of the direction of the normal to the interface [25,24], but
this is not considered further in this paper. Since the thin
interface formulation introduced in the next section dic-
tates that, at each position, the diffusion potentials are
equal in all phases (Eq. (8)), it is most convenient to intro-
duce composition dependence of the interfacial properties
by formulating the model parameters as a function of the
local diffusion potentials, namely cqi;rjð~lÞ and jqi;rjð~lÞ.

2.3. Chemical bulk free energy functional and new

interpolation functions

Following the thin-interface approach for multi-compo-
nent alloys described in Refs. [7,9,8,26,14,6], interfaces are
treated as a mixture of two phases, each with its own phase
composition xq and composition-dependent free energy
function fq(xq). The bulk free energy fb has a form

fb ¼
X

q

hqfqðxqÞ ¼
X

q

hq
Gq;mðxqÞ

V m
ð7Þ

with
P

q the sum over all phases, fq the energy density and
Gq,m the molar Gibbs energy of phase q. The interpolation
functions hq must have a zero slope at the equilibrium val-
ues of the non-conserved phase fields or order parameters
representing the different phases and

P
qhq must equal 1,

e.g. h(/) = /3(10 � 15/ + 6/2) for a two-phase system
with equilibrium values / = 1 and / = 0 in the bulk
phases. The phase compositions xq are determined so that
at each position the diffusion potentials of all components
in all coexisting phases ~lq;k ¼ @fqðxqÞ=@xq;k are equal, giv-
ing the following set of equations:

@faðxaÞ
@xa;k

¼ @fbðxbÞ
@xb;k

¼ � � � ¼ @fqðxqÞ
@xq;k

¼ ~lk; 8 k ð8Þ

Thus the overall composition x relates to the phase com-
positions as

x ¼
X

q

hqxq ð9Þ

Within the bulk of phase q,xq = x and fb = fq(x). At
interfaces, the composition profile and local free energy
are affected by the thin-interface formulation. An impor-
tant advantage of this approach (7)–(9) compared to other
quantitative alloy approaches is that composition-depen-
dent Gibbs energy expressions for multi-component sys-
tems optimized according to the CALPHAD approach
[27] can be used directly in the phase-field bulk energy (7)
[28–33]. The formalism has been extended to systems with
interstitial elements by Cha et al. [34].

For multi-phase systems, we introduce the following
interpolation functions for a multi-order-parameter repre-
sentation (1):

haðgÞ ¼ /aðgÞ ¼
Ppa

i¼1g
2
aiP

q

Ppq

i¼1g
2
qi

¼ jgaj
2P

qjgqj
2

ð10Þ

for phase a and analogous expressions for the other phases.
Since

P
q/q ¼ 1, the /a can be interpreted as phase frac-

tions. Furthermore, it can be verified that "a,q, d/a/dgqi

(gqi = 0) = d/a/dgqi(gqi = 1,grj,rj–qi = 0) = 0 (see Fig. 1).
Similarly, for a multi-phase-field representation �/a; �/b; . . .
with

P
q
�/q ¼ 1, interpolation functions of the form

hað�/a; �/b; . . .Þ ¼ /a ¼
�/2

aP
q

�/2
q

ð11Þ

can be formulated and it can be verified, now consideringP
q
�/q ¼ 1, that again 8a; q; d/a=d�/qð�/q ¼ 0Þ ¼

d/a=d�/qið�/q ¼ 1; �/r;r–q ¼ 0Þ ¼ 0.
The interpolation functions (10) and (11) meet the

requirements to be combined with other thin-interface
approaches for alloys as well. They can be used in the bulk
free energy formulation of Folch and Plapp [17] instead of
the fifth-order polynomials, giving

fb ¼
1

2
ðxB �

X
q

AqðT Þhqð�/a; . . . ; �/q; . . .ÞÞ2

þ
X

q

BqðT Þhqð�/a; . . . ; �/q; . . .Þ ð12Þ

A generalization towards multi-phase systems is now
straightforward. In principle, it is also possible to take
the interpolation functions ~g and �g in the bulk free energy
for binary dilute alloys of Echebarria et al. [12] as ~g ¼ /a

and �g ¼ 1
lnðkÞ ln½1� ð1� kÞ/a� [21] with k = xa,eq/xb,eq the

ratio between the equilibrium concentrations in the coexis-
ting phases a and b. For multi-phase systems, however, it is
complicated to find an appropriate relation between the
two interpolation functions �gð~gqÞ.
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The new interpolation functions can be used to extend
the classic Wheeler-Boettinger-McFadden (WBM) phase-
field approach for alloy solidification [35] to multi-phase
systems, resulting in a bulk free energy of the form

fb ¼
X

q

hqfqðxÞ ¼
X

q

hq
Gq;mðxÞ

V m
ð13Þ

where the free energies of the different phases are evaluated
for the actual local composition. A bulk free energy density
of the form (13), however, contributes to the interfacial
energy making a general quantitative approach on realistic
length scales computationally unfeasible.

2.4. Mass diffusion and interface movement

The diffusion equations of the C � 1 independent com-
ponents are of the form

@xk

@t
¼ �r � J k ¼ r �

XC�1

m¼1

Mkmðg; xÞr
dF ðg; xÞ

dxm

� �
ð14Þ

with Jk the flux of component k and usually Mkmðg; xÞ ¼P
q/qMq;kmðxÞ [9,14], giving

J k ¼ �
XC�1

m¼1

Mkmðg; xÞr
X

q

/q

@fqðxqÞ
@xq;m

@xq;m

@xm

" #

¼ �
XC�1

m¼1

X
q

/qMq;kmðxÞ
" #

r~lm

" #
ð15Þ

Within the bulk of each phase, Eq. (15) reduces to an
Onsager-type diffusion equation with Mq,km the mobilities
of phase q for interdiffusion in a volume fixed frame [36].
The Mq,km are related to the atomic mobilities of the differ-
ent elements Xq,k(k = 1. . .C) as Mq;km ¼

PC
l¼1ðdkl � xkÞ

ðdml � xmÞxlXq;l and to the chemical (inter)diffusivities as
Dq;km ¼

PC�1
l¼1 Mq;klð@2f =@xl@xmÞ [36–38,32,39]. Composi-

tion-dependent expressions for the atomic mobilities
optimized according to the CALPHAD approach [40]
and diffusion coefficients calculated from first principles
[41–44] can thus be used directly in the diffusion Eqs.
(14) and (15).

The evolution of the non-conserved order-parameter
fields gqi follows:

@gqi

@t
¼ �LðgÞ dF ðg; xÞ

dgqi

¼ �LðgÞ g3
qi � gqi þ 2gqi

X
r

Xpr

j¼1;rj–qi

cqi;rjg
2
rj

 

�jðgÞr2gqi þ
2gqiP
rjgrj

2
½1� /q� fqðxqÞ �

XC�1

k¼1

~lkxq;k

" #"

�
X
r–q

/r frðxrÞ �
XC�1

k¼1

~lkxr;k

" ##!
ð16Þ

with the kinetic coefficient L(g)

LðgÞ ¼
P

qi

Pp
rj–qiLqi;rjð~l;wqi;rjÞg2

qig
2
rjP

qi

P
rj–qig

2
qig

2
rj

ð17Þ

To avoid third-phase contributions [24] and interface
width-dependent solute segregation at interfaces, interface
properties are treated as fixed for a given grain configura-
tion and local diffusion potential (similar variations in
grain boundary energy with misorientation are treated in
Monte Carlo Potts approaches [45]). The g-and x-depen-
dence of j and c are therefore not considered when taking
the derivative in Eqs. (14) and (16). The limitations of such
a not-fully-variational approach are discussed in Section 3.
The equations can be fully variational when taking all cqi,rj

independent of composition and all jqi,rj = j equal and
independent of composition.

Fig. 1. (a) Interpolation functions ha ¼ /a ¼ g2
a=ðg2

a þ g2
bÞ and

hb ¼ /b ¼ g2
b=ðg2

a þ g2
bÞ as a function of the order parameters for a two-

phase system represented by ga and gb. The values of /a and /b across an
a/b interface in local equilibrium are indicated for different values of the
model parameter c in the interfacial free energy (4) and (5). (Dince the g
profiles depend on c, the / profiles do as well.) The slope of the / profiles
is always 0 at (ga, gb) = (0, 1) and (1, 0). (b) Effect of a bulk driving
force Dfb(fa = Dfb and fb = 0) on the shape of the homogeneous part in the
free energy. The local minima remain at (ga, gb) = (0, 1) or (1, 0); the bulk
free energy of grain a, however, is shifted by an amount Dfb compared to
that of grain b. When growth is controlled by bulk diffusion, Dfb ? 0 at
the interface and there is thus no effect on the interfacial free energy.
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2.5. Parameter relations for interfacial properties

The specific free energy (J m�2) of a diffuse interface
between two phases a and b in chemical equilibrium is
defined as [46]

ra;b ¼ F tot �
Z 0

�1
faðxa;eqÞdx�

Z þ1

0

fbðxb;eqÞdx ð18Þ

¼
Z þ1

�1
fsðga; gb; ~leqÞdxþ ðfaðxa;eqÞ � fbðxb;eqÞÞZ 0

�1
/bdx�

Z þ1

0

½1� /b�dx
� �

¼
Z þ1

�1
fsðga; gb; ~leqÞdxþ 0 ð19Þ

with x measured along the normal to the interface and
xa,eq, xb,eq and ~leq the equilibrium compositions of the
coexisting phases and equilibrium diffusion potential of
the system. Moreover, /a + /b = 1 is used for an interface
between phases a and b. The bulk free energy contribution
(7) has accordingly no effect on the interfacial free energy
and the shape of the stationary g profiles across the inter-
face. The parameter relations for the interfacial free energy
ra,b and interface width ‘a,b derived for a polycrystalline
single-phase system in Ref. [24] thus remain valid, giving

ra;bð~lÞ ¼ gðca;bð~lÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mja;bð~lÞ

q
ð20Þ

‘a;bð~lÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ja;bð~lÞ
mf0;maxðca;bð~lÞÞ

s
ð21Þ

where the function g(ca,b) refers to an integral along the or-
der-parameter profiles and f0,max(ca,b) is evaluated from Eq.
(5) for g0

aðx ¼ 0Þ ¼ g0
bðx ¼ 0Þ, with g0

a and g0
b the stationary

profiles. The functions have been evaluated numerically
over a large range of c values [47]. The interface width ‘
is defined based on the steepest gradient so that an equal
interface width results in equal accuracy and stability crite-
ria in the numerical solution of the phase-field equations.
Furthermore, for curvature-driven movement of a grain
boundary between two grains of the same phase, the kinetic
coefficient La1,a2 in Eq. (16) relates to grain boundary
mobility ma1,a2 as

ma1;a2ð~lÞra1;a2ð~lÞ ¼ ja1;a2ð~lÞLa1;a2ð~lÞ ð22Þ
with ra1;a2ð~lÞ and ma1;a2ð~lÞ an effective grain boundary en-
ergy and mobility which account implicitly for the effects of
solute segregation at the grain boundary as in Ref. [48].

2.6. Thin-interface approach for diffusion-controlled

interface movement

The new interpolation functions (10) meet all the require-
ments that follow from a thin-interface analysis for alloys
[12,14]. For ‘vn=eD � 1 and ‘/R1/2� 1, with vn interface
velocity, R1 and R2 the principle radii of curvature and eD
the average diffusivity at the interface, we therefore get [14]

faðxa;eqÞ � fbðxb;eqÞ �
XC�1

k¼1

ðxa;eq;k � xb;eq;kÞ~lk;i

¼ Df a!b
i ¼ ra;b

1

R1

þ 1

R2

� �
þ vn

ffiffiffiffiffiffiffiffi
m

ja;b

r
gðca;bÞ

La;b
�

ffiffiffiffiffiffiffiffi
ja;b

2m

r
I/ðca;bÞf

� �
ð23Þ

where ~lk;i is the diffusion potential at which the new phase
forms and f ¼ DcM�1Dc ¼

PC�1
k¼1 ðxa;eq;k � xb;eq;kÞ

PC�1
m¼1mkm

ðxa;eq;m � xb;eq;mÞ, with mkm the elements of the inverse of
the diffusion mobilities matrix M = Mmk. For the interpo-
lation functions (10), the integral I/ equals

I/ðca;bÞ ¼
ffiffiffiffiffiffiffiffi
2m
ja;b

s Z þ1

�1
/0

a 1� /0
a

� �
dx ð24Þ

with /0
a evaluated for the stationary order-parameter pro-

files. Numerically evaluated function values of I/(c)are
listed in Ref. [47].

Matching the thin-interface approximation (23) with the
sharp interface equation for diffusive transformations
Df a!b

i ¼ ra;bð1=R1 þ 1=R2Þ þ vn=ma;b [49,50] relates the
kinetic coefficient La,b in the phase-field model to the inter-
face mobility ma,b. Therefore, bulk diffusion-controlled
growth with infinite reaction rate at the interface (1/ma,b = 0)
is obtained in the phase-field model using

La;b ¼ Lleqð~lÞ
a;b ¼

ffiffiffi
2
p

mgðca;bð~lÞÞ
ja;bð~lÞI/ðca;bð~lÞÞf

ð25Þ

For L < Lleq
a;b, the g profiles will not adapt instanta-

neously for changes in the molar-fraction profiles due to
bulk diffusion, whereas for L > Lleq

a;b the g profiles will
become unstable and break free from the molar-fraction
profiles.

The thin-interface analysis resulting in Eq. (23) requires
Ma,mk = Mb,mk = Mmk (two-sided model) or, for the grow-
ing phase a and with a non-variational anti-trapping cur-
rent in the diffusion equations, Ma,mk = 0 and Mkm =
Mb,mk (one-sided model). The anti-trapping concept
[11,12] has been extended to multi-phase systems and
systems with arbitrary thermodynamic and diffusion prop-
erties [51,6], and to multi-order-parameter representations
[21] for polycrystalline solidification. The new interpolation
functions have the appropriate form to be combined with
these approaches. There is, however, no full solution yet
that removes all exaggerated non-equilibrium effects [52]
in the phase-field model for the general case Ma,mk –
Mb,mk – 0, which is important for multi-phase systems.
The simulations discussed in Section 3 show that, for coars-
ening and parabolic growth, the non-equilibrium effects are
negligible without anti-trapping current even when using a
mesoscale interface width. Under these conditions, result
(25) with Mmk = 0.5(Ma,mk + Mb,mk) can still be used to
calculate the value of La,b, for which growth is close to bulk
diffusion-controlled growth.
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3. Numerical validation

The effect of the diffuse interface width and grid spacing
on the accuracy with which the analytical parameter rela-
tions are reproduced in the simulations was validated for
four microstructural configurations, namely a stagnated
triple junction, the growth of an intermediate phase, the
growth of a sherical grain from a supersaturated matrix
and Ostwald ripening of two spherical grains. A binary
Cu–Sn system was therefor considered with three phases,
namely a Cu-rich face-centered cubic (fcc) phase, an Sn-rich
body-centered tetragonal (bct) phase and an intermediate
phase Cu6Sn5, and a parabolic composition dependence of
the form fq = Aq/2(xq � xq,0)2 + Cq was assumed for the
bulk free energies of the phases, with Afcc = 1e8, Abct = 1e9
and ACu6Sn5 = 1e9, Cfcc = 0, Cbct = 1e7 and CCu6Sn5 = �1e6
and xfcc,0 = 0.076, xbct,0 = 0.978 and xCu6Sn5,0 = 0.455. For
these free energies, the common tangent rule gives
xfcc,eq = 0.050 and xCu6Sn5,eq = 0.452 for fcc coexisting with
Cu6Sn5 and xbct,eq = 0.999 and xCu6Sn5,eq = 0.476 for bct
coexisting with Cu6Sn5, which are close to the equilibrium
compositions at T = 150 �C, ignoring the Cu3Sn phase.
Furthermore, the diffusion mobilities relate to the diffusion
coefficients as Mq = Dq/Aq. Unless otherwise indicated,
the interfacial free energy r was taken to be 0.5 J m�2 and
the model parameter c = 1.5 for all interfaces, so that
gðcÞ ¼

ffiffiffi
2
p

=3; f0ðcÞ ¼ 1=8 and I/(c) = 1/2. The other model
parameters were accordingly calculated as a function of
interface width from j = 3/4r‘ = 3/8‘, m = 6r/‘ = 3/‘ and
Lleq = (4m)/(3jf). A standard explicit finite difference
scheme with five-point stencil for the Laplacian was used
to discretize the equations. Neumann boundary conditions
were applied. All simulations start from a molar-fraction

field for Sn and order-parameter fields with sharp steps at
the interfaces which become diffuse during the first time steps
of the simulation. The main findings are presented in this
section.

In Table 1, angles obtained from simulations of a stag-
nated triple junction are listed for three different ratios of
r12–r13 and for different interface widths ‘ and grid spac-
ings Dx (although the conclusions are based on simulations
for a larger range of ratios r12–r13). Since the half lamellar
spacing is 5 lm, the Gibbs–Thomson effect is negligible.
For given interfacial energies, interface width and grid
spacing, the angles are close to those obtained in simula-
tions for single-phase systems [24]. The bulk free energy
and composition field thus indeed have a negligible effect
on the accuracy with which triple junction angles are repro-
duced in simulations. A general difficulty with triple junc-
tions is that, for the non-variational variant of Eq. (16)
with constant interface width, angles outside the range
110–150� are difficult to obtain, whereas, using the varia-
tional variant with constant j, all stable angles and also
wetting are reproduced accurately using the spatial resolu-
tion required to resolve the movement of the thinnest inter-
face. The latter approach is, however, inefficient from a
numerical point of view because of the variations in inter-
face width with variations in interface free energy.

In Fig. 2 simulation results are presented for the growth
of an intermediate Cu6Sn5 phase in between a Cu-rich fcc
and an Sn-rich bct phase, with the bct phase supersaturated
in Cu(xinit = 0.95). L = Lleq for both interfaces, calculated
from Eq. (25) with Mmk = 0.5(MCu6Sn5,mk + Mmk,fcc/bct).
Growth is first controlled by diffusion in the bct phase,
followed by a regime where growth is dominated by diffusion
through the intermediate Cu6Sn5 layer. It can be verified

Table 1
Angles measured from simulations of a stagnated triple junction between two Cu6Sn5 lamellae in equilibrium with a bct phase, using the procedure
described in Ref. [59]. The effect of grain boundary width ‘ and grid spacing Dx is studied for different ratios r12 to r13, resulting in angles bc = 103�, 120�
and 138� according to Young’s law. The half lamellar spacing is 5 lm. The parameter relations for the simulations with constant ‘ (not-fully-variational)
are as follows, for r = 0.2: m = 1.125e6/‘, j = 0.200e�6 ‘, c = 1.1629; for r = 0.25: m = 1.125e6/‘, j = 0.250e�6 ‘, c = 1.5; and r = 0.35: m = 1.125e6/‘,
j = 0.348e�6 ‘, c = 2.7149 (calculated using algorithm 1 from Ref. [24] with c = 1.5 for r = 0.25). The parameter relations for the simulations with
constant j (fully variational) are as follows, for r = 0.2: m = 2.36e6, j = 0.1311e�6, c = 0.85; for r = 0.25: m = 2.36e6, j = 0.1311e�6, c = 1.2; for
r = 0.35: m = 2.365e6, j = 0.1311e�6, c = 3.7 (calculated from (36a)–(36c) of [24]).

r12 = 0.25, r13 = 0.20 r12 = r13 = 0.25 r12 = 0.25, r13 = 0.35

bc=103� (cos(bc/2) = 0.625) bc=120� (cos(bc/2) = 0.500) bc=138� (cos(bc/2) = 0.357)

Dx = 0.1 lm 109 123 139
‘ = 1.333 lm (0.582) 6.9% (0.479) 4.2% (0.348) 2.5%

Dx = 0.1 lm 108 120 137
‘ = 0.667 lm (0.588) 5.9% (0.497) 0.5% (0.366) 2.5%

Dx = 0.05 lm 106 120 138
‘ = 0.667 lm (0.600) 4.0% (0.502) 0.4% (0.358) 0.2%

Dx = 0.1 lm 102 120 140
‘ varies (0.629) 0.6% (0.497) 0.5% (0.343) 4.0%
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that, for xinit = 0.95, ‘vn/D� 1 after a growth distance of
less than ‘, since for one-dimensional (1-D) layer growth
vn/D = 0.5 � 1.22�[(xbct,init � xbct,eq)2]/[(xCu6Sn5,eq � xbct,init)-
(xCu6Sn5,eq � xbct,eq)]�1/S � 0.005, with S the growth dis-
tance [49,53]. The diffuse interface width ‘ is therefore
limited by he initial intermediate layer thickness. For
Tinit/2 > ‘, both parabolic growth regimes and the transi-
tion in between are reproduced accurately. Except within
the diffuse interface region, the composition profiles for
different interface widths match. The deviation (introduced
at start-up over a distance much smaller than ‘) on the
intermediate layer thickness becomes less than 2% when
T/2 = 2‘ and less than 1% when T/2 = 4‘. For this 1-D
geometry, the simulation results are independent of Dx

for ‘ P 3.3Dx.

Fitting of simulation data for steady-state growth con-
trolled by diffusion through the intermediate layer, as shown
in Fig. 3, gives, for L ¼ Lleq; T ¼ k

ffiffi
t
p

with the parabolic
growth constant k = 0.0045 lm s�1/2 independent of the
interface width, even for ‘ > Tinit/2. For ‘ > Tinit/2, however,
the transition towards parabolic growth is unrealistic. For
L < Lleq, growth is slower, and for L > Lleq, in general the
g profiles become unstable (growth may be possible for a
small increase, but is then faster than for L = Lleq and the
molar fractions of Sn at the interface deviate from their equi-
librium values). For increasing interface width, growth
becomes more sensitive to deviations of L from Lleq.

In Fig. 4, simulation results obtained for the growth of a
spherical Cu6Sn5 grain in a bct matrix supersaturated in Cu
are plotted for different interface widths and for
DCu6Sn5 = Dbct and DCu6Sn5 = 1e�5Dbct. All curves are
for L = Lleq. For a given interface width, the kinetic coeffi-
cient Lleq

1-sided, calculated for DCu6Sn5 = 1e�5Dbct, is there-
fore only half of the Lleq

2-sided used for DCu6Sn5 = Dbct, since
M = 0.5*(Mbct + MCu6Sn5) in Eq. (25). It was verified that
the g profiles indeed become unstable for L ¼ 2Lleq

1-sided when
DCu6Sn5� Dbct. The conditions for the thin interface limit
vn‘/D� 1 are easily obtained within a growth distance ‘,
since vn/D = 0.5 � 1.62 � (xbct,init � xbct,eq)2/(xCu6Sn5,eq �
xbct,init)

2 � 1/S � 0.009 for a sphere [49,53]. For ‘ > Rinit,
the shape of the order-parameter profiles deviates from
the steady-state profiles, and this seriously affects the
growth behavior. Also for ‘ < Rinit, there are interface
width-dependent variations on the velocity and composi-
tion at which the Cu6Sn5 phase forms during the initial
growth over a distance of approximately ‘ (more than for

Fig. 2. (a) Composition profiles at t = 62,500, 625,000, 12,500,000 and
25,000,000 s and (b) half intermediate layer thickness T/2 as a function of
the square root of time t, for different interface widths ‘ and L = Lleq,
obtained from simulations of the growth of an intermediate Cu6Sn5 phase
from fcc (Cu) and bct (Sn) with diffusion coefficients Dfcc = 1e�25,
DCu6Sn5 = 1e�16 and Dbct = 1e�14 (J m�2), initial compositions xfcc,init =
0.05, xCu6Sn5,init = 0.455 and xbct,init = 0.95, grid spacing Dx = 0.1 lm,
system length 200 lm (only the left 100 lm are plotted) and initial
intermediate layer thickness Tinit = 8 lm or Tinit = 16 lm initially
positioned at 50 lm.

Fig. 3. Half intermediate layer thickness T/2 as a function of the square
root of time t obtained from simulations of the growth of an intermediate
Cu6Sn5 phase from fcc (Cu) and bct (Sn) with diffusion coefficients
Dfcc = 1e�25, DCu6Sn5 = 1e�16 and Dbct = 1e�13 (m2 s�1), initial com-
positions xfcc,init = 0.05, xCu6Sn5,init = 0.455 and xbct,init = 0.999, system
length 100 lm, initial intermediate layer thickness Tinit = 3 lm initially
positioned at 50 lm and Dx = 0.1 lm. Results are plotted for different
interface widths ‘ and L = Lleq and (�) L = 0.7Lleq. For ‘ > 3.3Dx and
L = Lleq, a steady-state regime is reached where T ¼ k

ffiffi
t
p

with
k = 0.0045 lm s�1/2. For L < Lleq initial growth is slower and it takes
more time to approach steady-state growth.
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the 1-D growth of the intermediate layer). These deviations
are related to the fact that the profiles have to become
smooth and obtain the speed dictated by bulk diffusion in
the bct phase. After this start-up period, however, a para-
bolic growth regime R ¼ k

ffiffi
t
p

with parabolic growth con-
stant k = 0.04 lm s�1/2 independent of ‘ and DCu6Sn5 is
reached for Rinit > ‘ and ‘/Dx > 10 (using a five-point sten-
cil for the laplacian), which is close to the theoretically

expected growth constant k � 1:6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xbct;init�xbct;eq

xCu6Sn5;eq�xbct;eq

q ffiffiffiffiffiffiffiffi
Dbct

p
¼

0:04 [49,53]. The composition profiles for DCu6Sn5=1e-
5Dbct also show that after a growth distance of �2‘ the
Cu6Sn5 phase forms with a molar fraction of Sn that
deviates less than 0.001 from the equilibrium value. For

Rfinal > 4‘, the effect of the initial deviations on the final
precipitate size is less than 1%.

Comparison of the composition profiles in Fig. 4 b)
reveals that there is a small solute-trapping effect during
parabolic growth when DCu6Sn5� Dbct. The maximum in
the composition profiles, reached at a growth distance of
approximately 2‘, is slightly above the equilibrium compo-
sition (the Gibbs–Thomson effect is negligible for the con-
sidered particle size and would shift the composition in the
other direction). The maximum deviation of the molar-
fraction field from the equilibrium value, however, is
around 0.001 and diminishes during further growth. The
effect on the overall growth behavior and final precipitate
size is therefore negligible compared to the deviations
introduced during start-up. An anti-trapping current
[11,14] would not remove these initialization effects, except
that it would allow for the same kinetic coefficient Lleq as
for the two-sided case. The numerical solution of an anti-
trapping current, however, requires a considerable amount
of extra calculation time. Nevertheless, to study morpholo-
gies with constant growth rate, e.g. dendrites and needles, it
is still important to extent the anti-trapping formalism in a
consistent way to multi-component and multi-phase sys-
tems with arbitrary thermodynamic and diffusion charac-
teristics. Furthermore, for a general treatment of
microstructure evolution with possibly large driving forces
and gradients in properties, it remains a major task for the
future to verify to what extent thin-interface approaches
can be relevant for simulating quantitatively local non-
equilibrium effects at interfaces or in the bulk.

In Fig. 5, the radius of the shrinking grain during the
Ostwald ripening of two Cu6Sn5 grains in a bct matrix is
plotted as a function of time for different simulation

Fig. 4. Simulation results obtained for different interface widths ‘ from
simulations of the growth of a spherical Cu6Sn5 grain from a supersat-
urated bct grain with initial compositions xbct,init = 0.96 and xCu6Sn5,init =
0.465, diffusion coefficients Dbct = 1e�14 and DCu6Sn5 = Dbct (broken
lines) or DCu6Sn5 = 1e�5Dbct (full lines), Rinit = 2 lm, Dx = 0.1 lm,
L = Lleq and system size 30 � 30 � 30 lm3. (a) Radius R as a function
of the square root of time t. For ‘/Dx > 10 and Rfinal > 4‘ a parabolic
growth regime is reached where R ¼ k

ffiffi
t
p

with k = 0.04 lm s�1/2. (b)
Composition profiles at t = 62.5 and 62,500 s for different interface widths
and DCu6Sn5 = 1e�5Dbct and for ‘ = 1.33 lm and DCu6Sn5 = Dbct. Because
of the large difference in diffusivities for DCu6Sn5 = 1e�5Dbct, the
composition at which the Cu6Sn5 phase forms is maintained during
growth, whereas for DCu6Sn5 = Dbct the composition of the precipitate
homogenizes continuously during growth.

Fig. 5. Radius as a function of time of the shrinking grain obtained from a
simulation of Ostwald ripening of two Cu6Sn5 grains in a bct matrix with
diffusion coefficients Dbct = 1e�14 m2 s�1 and DCu6Sn5 = Dbct (full lines)
or DCu6Sn5 = 1e�19 m2 s�1 (broken lines). Initial compositions are
xCu6Sn5,init = 0.455 and xbct,init = 0.99, initial radii Rsh,init = 3.2 lm and
Rgr,init = 3.6 lm and system size 28 � 14 � 14 lm3. Curves are plotted for
different interface widths ‘ and grid spacings Dx, and for L � Lleq, namely
L = 0.34Lleq (1–2), L = 0.68Lleq (3), L = Lleq (4). For curve (1), the
numerical resolution ‘/Dx is too low.
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conditions. For ‘/Dx > 6.6, the choice of the interface
width has no effect on the evolution of the precipitates as
long as the radius of the shrinking grain is larger than ‘.
When considering the Ostwald ripening of a large number
of precipitates, the deviations introduced just before disap-
pearance of one of the precipitates will probably hardly
affect the coarsening of the remaining precipitates. The
simulations also show that the value of the kinetic coeffi-
cient L is far less important for coarsening than for growth.

4. Conclusions

A new type of interpolation function for quantitative
phase-field models for multi-phase systems is introduced.
The application of these functions within the thin-interface
formulation of Tiaden et al. [7] and Kim et al. [9,14] for
multi-component alloys is numerically validated for coars-
ening and parabolic growth, showing that, for the pro-
posed model formulation: (i) the bulk energy term and
composition fields have no effect on the accuracy with
which interfacial energy and triple junction angles are
reproduced; (ii) the coarsening of precipitates (Ostwald rip-
ening) is not affected by the choice of the diffuse interface
width ‘ for Rmin > ‘, with Rmin the radius of the smallest
precipitate; and (iii) for parabolic growth, the effect of
interface width becomes negligible and parabolic growth
constants are reproduced correctly for Rinit or Tinit/2 > ‘
and Rfinal or Tfinal/2 > 4‘, with Rinit and Rfinal the initial
and final sphere radius and Tinit and Tfinal the initial and
final intermediate layer thickness, respectively. All conclu-
sions assume that the profiles at the interface are well
resolved so that the results are independent of Dx.

Besides for chemically driven processes, the interpola-
tion functions will be very valuable in the development of
quantitative phase-field approaches coupled with micro-
elasticity and plasticity theories [26,54–56] for multi-phase
systems. Interpolation functions with similar properties
are required to interpolate the elastic and plastic properties
in a thermodynamically consistent way while keeping the
minima of the free energy in their intended positions for
quantitative accuracy. Furthermore, phenomenological
functions that interpolate between the properties of differ-
ent phases are also used in amplitude equation formula-
tions [19,57,58], for which there is currently renewed
interest as a method for producing coarse-grain phase-
field-crystal models and atomic density functional theories.
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