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Pinning effect of second-phase particles on grain growth
in polycrystalline films studied by 3-D phase field simulations
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Abstract

Three-dimensional simulations of grain growth in thin films containing finely dispersed second-phase particles were performed using a
phase field model. The simulations show that although the growth behavior of the columnar grain structures in thin films is essentially
two-dimensional, the interaction between the particles and the grain boundaries is three-dimensional. Grain boundaries can therefore
more easily break free from the particles than in purely two-dimensional systems, resulting in fewer grain boundary–particle intersections
and a larger final grain size. For a given volume fraction fV and size of the particles r, the final grain size Rlim increases with film thickness.
Moreover, it was found that particles located in the middle of the film are most efficient in pinning grain boundaries. A classical Zener
type relation Rlim=r ¼ Kð1=f b

VÞ cannot describe these effects.
� 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Grain growth in thin films is different from grain growth
in bulk materials [1,2]. Once the grain size becomes larger
than the thickness of the film, grains grow columnar, with
their boundaries perpendicular to the plane of the film.
Grain growth is then essentially two-dimensional (2-D),
as grain boundaries are only significantly curved within
the plane of the film. Yet three-dimensional (3-D) phenom-
ena can considerably affect the growth behavior. The drag
effect of thermal grooving at the film surface and the influ-
ence of additional driving forces, such as the orientation
dependence of the surface energy or the film–substrate
interfacial energy, or the strain energy, have been discussed
several times [1–6]. In this article, it is shown that second-
phase particles also introduce a 3-D effect in the migration
of the columnar grain boundaries.

Small particles or impurities that lead to the formation
of small precipitates are often added to thin films for extra
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pinning of the grain boundaries. Mostly, the purpose is to
promote abnormal grain growth. The particles hinder nor-
mal grain growth so that a few grains, e.g. those with a low
surface energy, can grow abnormally at the expense of the
other pinned matrix grains. In this way, films with large
columnar grains that are many times (up to 1000) the thick-
ness of the film are obtained [1,7–9]. Such films are wanted
in micro-electronic applications since a large grain size
reduces the rate of failure due to electromigration.

Most analytical theories [10,11] for Zener pinning pre-
dict that normal grain growth is inhibited when a critical
mean grain radius Rlim equal to

Rlim

r
¼ K

1

f b
V

ð1Þ

is reached, where r is the particle radius and fV the volume
fraction of the second-phase particles. The value of the
parameters K and b varies among the different theories. If
the size and shape of a particle and the surface tensions
associated with the grain boundaries and the particle ma-
trix interface are known, the pinning force of the particles
can be analytically calculated as a function of the position
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of the grain boundary [10–14]. The calculation of the total
pinning force of a dispersion of particles on a unit area of
grain boundary, on the other hand, is more complex. Not
all the particles lie on a grain boundary and it appears to
be extremely difficult to determine the fraction / of
particles that effectively contributes to the pinning effect.
Moreover, the pinning force exerted at each grain bound-
ary–particle intersection depends on the geometry of the
grain boundary near the grain boundary–particle intersec-
tion. All analytical theories make approximations in calcu-
lating the pinning force of a dispersion of particles on a
grain boundary network.

The pinning effect of second-phase particles is frequently
studied by means of computer simulations based on Monte
Carlo Potts [15–19], front-tracking (or vertex) [20–22],
phase-field [23–26] and finite element models [27]. The
main advantage of these techniques is that the whole
microstructure, namely the shape and position of the grain
boundaries is calculated as a function of time. As a conse-
quence, no assumptions on the fraction of particles that is
in contact with a grain boundary and the grain boundary
profile at an intersection are required. Furthermore, com-
pared with experimental studies, material and process
parameters can be varied relatively easily and indepen-
dently in computer simulations. A serious drawback is that
simulations for grain growth require massive computer
resources, especially in the case of 3-D simulations. For
2-D systems [15,17,18,20,21,23,25], the simulations show
that most particles are in contact with a grain boundary
(/ � 1) and the final mean grain radius Rlim obeys a rela-
tion of the form Eq. (1) with b = 0.5 and K between 1.2
and 1.7. For 3-D systems [16,19,24,26,27], it is clear that
the fraction of particles in contact with a grain boundary
/ is lower than in 2-D systems, but there is no agreement
yet on the parameter values in relation (1).

Grain growth in thin films is usually treated with 2-D
simulations [28,29]. Three-dimensional aspects, such as sur-
face grooving [20,30], anisotropy in the surface energy of
the grains [31] and substrate–film mismatches [32], are
included as additional terms in the driving force for grain
boundary migration. Also the pinning effect of second-
phase particles in thin films was handled using a modified
2-D grain growth model [20]. However, in some respects,
2-D simulations do not agree with experimental findings
for thin films. They predict, for example, that nearly all
particles lie on grain boundaries [15,20,25], whereas in thin
films there are many particles within the grains [9,33]. Two-
dimensional simulations therefore overestimate the pinning
effect of second-phase particles in thin films. Moreover,
some experimental studies [7–9] revealed that particles
located at or near the middle of the film are more effective.
This feature might be interesting from an application point
of view, yet it is completely ignored in 2-D simulations.

In this article, the pinning effect of second-phase parti-
cles on grain growth in thin films is studied from 3-D sim-
ulations based on a phase field model. The simulation
results are compared with results from 2-D simulations
and with experimental results obtained by Longworth
and Thompson [9] for Al-alloy films containing H 0-CuAl2
precipitates.

2. Model, model parameters and numerical implementation

Phase field models for grain growth in the presence of
second-phase particles were proposed by Fan et al. [23],
Steinbach and Apel [24] and the present authors [34]. The
latter model was applied to study the effect of second-phase
particles on grain growth in 2-D systems [25] and 3-D [26]
systems. The same model was used for the simulations dis-
cussed in this article. Much effort was made to reduce the
computational requirements as far as possible. As a result,
the model allows one to perform simulations for polycrys-
talline structures containing a large number of grains and
particles and, at the same time, to resolve the shape of
the grain boundaries near each particle–grain boundary
intersection. A large number of grains and particles must
be considered in the simulations to obtain statistically sig-
nificant values for the final mean grain size. The evolution
of the grain boundary profile near a grain boundary–parti-
cle intersection determines the distance over which the par-
ticle pins the grain boundary [13,35–37]. Therefore, the
grain boundary shape near particle intersections must be
treated explicitly in the simulations in order to predict
the number of particles that is in contact with a grain
boundary.

2.1. Model description

The model is based on the phase field model for normal
grain growth in single phase materials of Chen [38] and
Fan and Chen [39]. The different grains of the matrix phase
are represented by a set of phase field variables

g1ðr; tÞ; g2ðr; tÞ; . . . ; gpðr; tÞ

that are continuous functions of the spatial coordinates
r = (x1, x2, x3) and time t. A spatially varying function
U(r) is used to describe the dispersion of second-phase par-
ticles. U(r) equals 1 within the particles and 0 outside the
particles. It is assumed that the particle–matrix interface
is incoherent and the particle dispersion is constant in time.
The homogeneous free energy density of the system is for-
mulated as a Landau polynomial of the phase field vari-
ables gi

f0ðg1; g2; . . . ; gpÞ

¼ m
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For U = 1, the homogeneous free energy density has a sin-
gle minimum at (g1, g2, . . . ,gp) = (0, 0, . . . , 0). For U = 0,
the homogeneous free energy density has 2p minima with
equal depth at

ðg1; g2; . . . ; gi; . . . gpÞ ¼ ð0; 0; . . . ;�1; . . . ; 0Þ for i ¼ 1 . . . p
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distinguishing different matrix grains. It is assumed that
gi = 1 and gi = � 1 represent the same grain orientation.
The temporal evolution of the gis is described by Ginz-
burg–Landau equations

ogiðr; tÞ
ot

¼ �L
of0ðg1; g2; . . .Þ

ogiðr; tÞ
� jr2giðr; tÞ

� �
ð3Þ

with L a kinetic parameter and j the gradient energy coef-
ficient. A full description of the model was given in Ref.
[34].

In this model, the pinning effect of the particles is based
on the fact that when a particle and a grain boundary inter-
sect, the total amount of grain boundary in the system is
reduced by the intersection length (2-D) or area (3-D).
Accordingly, new grain boundary area must be created
before the grain boundary can break free from the particle.
When a grain boundary meets a particle, the diffuse regions
of the grain boundary and the particle–matrix interface
overlap and interact. After a few time steps the original
particle–matrix interface, corresponding to the equilibrium
profile of the gis is recovered. The grain boundaries neither
go through the particles nor envelop them. This behavior
conforms to the interaction mechanism assumed for most
incoherent particles [10,11,13,14,40,41].

One problem of grain growth models derived from the
model of Chen [38] is that when two neighboring grains
are represented by the same phase field variable, they coa-
lesce within a few time steps. A large number of phase field
variables must be used to minimize the effect of this
unphysical grain coalescence. According to Fan and Chen
[39], 36 phase field variables suffice to obtain realistic grain
growth behavior in 2-D systems. Later, Krill and Chen [42]
showed that for more extensive grain growth and for 3-D
grain growth much more phase field variables are required
(up to 200 for 3-D simulations). Therefore, they developed
a dynamic grain-orientation-reassignment technique that
avoids grain coalescence and allows one to perform 3-D
grain growth simulations for isotropic materials using far
fewer phase field variables. Due to the pinning effect in
the present simulations, the extent of grain growth and
the frequency of grain coalescence were much smaller than
in the simulations for normal grain growth of Krill and
Chen. It was not necessary to check each time step whether
grains represented by a same phase field variable were
approaching each other, like in the dynamic grain-orienta-
tion-reassignment technique. Instead, after a certain
amount of grain growth, all phase field variables were reas-
signed to the grains at the same time. Depending on the
extent of grain growth, the reassignment procedure was
performed 1–3 times during a simulation. A set of 30 phase
field variables was used (p = 30). This approach does not
completely exclude the coalescence of neighboring grains,
though the frequency is largely reduced since phase field
variables eliminated during extensive grain growth are rein-
troduced into the simulation. Moreover, phase field vari-
ables were assigned in such a way that grains represented
by the same phase field variable were far from each other.
Although the reassignment of phase field variables during a
simulation does not correspond to a physical process, it is
justifiable in the case of isotropic grain boundary proper-
ties since then all grain orientations are equivalent.

2.2. Numerical solution

A numerical method that combines a Fourier-spectral
method [43] with a finite difference discretization was used
to solve the phase field equations in 3-D for thin films. The
Fourier-spectral method along with periodic boundary
conditions was applied for the dimensions in the plane of
the film. Due to the small thickness, periodic boundary
conditions are not appropriate for the dimensions perpen-
dicular to the plane of the film. Therefore, a finite difference
discretization along with Dirichlet boundary conditions,
namely gi = 0, "i at the top and the bottom of the film,
was applied for the third dimension. A physical motivation
for forcing the gis to become 0 at the surface of the film is
that the atomic ordering of the bulk material is distorted at
surfaces.

The Fourier transform with respect to the coordinates
x1 and x2 in the plane of the film of Eq. (3) gives

oegðg1; g2; x3; tÞ
ot

¼� L
fof0
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 !
ðg1; g2; x3; tÞ

þ Lj

�
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where the subscript i is omitted to simplify the notation. g1

and g2 are coordinates in Fourier space related to x1 and x2

in real space. The functions eg and fof0

og are, respectively, the
Fourier transform of g and of0

og . In practice, the Fourier
transform is approximated by a discrete Fourier transform
using a fast Fourier transform algorithm and the functions
g and eg are only defined in discrete points. The coordinates
g1 and g2 take discrete values n(2p/NDx), with n = �N/
2 + 1, �N/2 + 2, . . . ,N/2, Dx the grid spacing in real space
and N the number of grid points in each dimension. For
each point (g1,g2) in Fourier space, Eq. (4) is a partial dif-
ferential equation in the spatial coordinate x3 and time t.
The equations are further discretized with respect to time
and the spatial coordinate x3 using a semi-implicit finite
difference scheme, resulting in a set of coupled algebraic
equations with unknowns egnþ1

s
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The index n refers to time steps and s to the discrete values of
the x3-coordinate. An inverse discrete Fourier transform ofegnþ1

s ðg1; g2Þ then gives gnþ1
s ðx1; x2Þ. In the current work a con-
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jugate gradient technique without preconditioner was used
to solve the algebraic system of Eq. (5). The accuracy of this
combined numerical technique is not better than that of an
usual semi-implicit finite difference discretization in the
three dimensions; however, computation times are shorter.

2.3. Model parameters and system specifications

The model contains four model parameters, j, m, L and
�, that are related to the interfacial energy of the grains and
the particles and the mobility of the grain boundaries. In
order to compare the results of the 3-D simulations with
previous 2-D simulations [25], the same parameter values
were taken, namely m = 1, � = 1, j = 0.5, and L = 1. Fur-
thermore, the grid spacing Dx and time step Dt were both
equal to 1. The particle radius r was taken as equal to 3.
However, after discretization, particles were not completely
spherical. They had a volume of 88 grid points (g.p.) and a
cross-section of 24 g.p. Due to the discretization and the
diffuse character of the interfaces, it is in fact difficult to
specify accurately the size of these small particles. For most
simulations, particles lay in the middle of the film and were
randomly distributed throughout the plane of the film. In
the discussion, the results of 3-D simulations are compared
with those of 2-D simulations for particles with the same
size and shape as the cross-section of the 3-D particles. A
justification of the parameter choice and particle size is
given in Ref. [25].

The simulation systems were 256 · 256 · l3 or 512 ·
512 · l3 g.p., with l3 the thickness of the film. l3 was mostly
15 or 21 g.p. Then the ratio l3/r is between 5 and 7, which is
in the range of the l3/r-ratios observed for thin Al films with
H 0-CuAl2 particles [7,9]. The simulations were initiated by
assigning small random values between �0.001 and 0.001
to all phase field variables at all discrete grid points. Within
approximately 50 time steps (Dt = 1), the random structures
evolved towards a fine-grained structure with most of the
particles located on a grain boundary (since the particles
were present during the nucleation of the grains, the posi-
tion of the grain boundaries is closely correlated to the posi-
tion of the particles in this initial structure).

The volume fraction of the second-phase particles fV in
the 3-D simulations is defined as the number of grid points
representing the second-phase particles (number of parti-
cles · particle volume, i.e. 88 g.p.) divided by the total
Fig. 1. 3-D simulation images at time steps (a) 800, (b) 6000 and (c) 42,000 o
second-phase particles located in the middle of the film for fV = 0.017 and syste
The bottom and top layers of the film are not displayed in order to reveal the gr
the particles. Parallel cross-sections through the middle of the film are shown
number of grid points in the system (l1 · l2 · l3). In the
same way, the area fraction of the second-phase particles
fa for 2-D systems is defined as the number of grid points
representing the second-phase particles (number of parti-
cles · particle area, i.e. 24 g.p.) divided by the total number
of grid points in the 2-D system (l1 · l2). For the 3-D thin
films the area fraction of the particles fa is defined as the
product of the number of particles in the film and the area
of the cross-section of the particles (24 g.p.), divided by the
area of the film (l1 · l2). For columnar grain structures, the
radius R of a grain is calculated as R ¼

ffiffiffiffiffiffiffiffiffi
A=p

p
, with A

the area of the grain measured in the parallel cross-section
through the middle of the film. To visualize the simulation
results, the function Wð~rÞ ¼

Pp
i¼1g

2
i ð~rÞ is displayed using

grey levels, with white representing W = 1 and black
W = 0. Particles appear as black spots, grains are bright
and interfaces gray.

3. Comparison between 2-D and 3-D simulations

3.1. Simulation results

In Fig. 1, images of a 3-D simulation are shown. The
thickness of the film l3 was 21 g.p. and the volume fraction
of the second-phase particles fV = 0.017 (fa = 0.1). All par-
ticles lay in the middle of the film, i.e. the centers of the par-
ticles were located in the parallel section through the
middle of the film. Only few particles are visible in these
3-D images, since most of the particles are in the bulk of
the system. To reveal the grain structure the top and bot-
tom layers of the film are not displayed. They would be
dark since the boundary conditions force all phase field
variables to become zero at the film surface. Cross-sections
through the middle of the film for the same time steps are
shown in Fig. 2. At time step 800 (Fig. 1a), the grain struc-
ture was approximately columnar. At the beginning of the
simulation, grain boundaries passed very easily by the
particles. When the grain size increased, the driving force
for grain growth decreased and became too low to over-
come the pinning pressure of the particles. More and more
grain boundaries got pinned by the particles. After about
42,000 time steps, the grain structure was completely pin-
ned. Different from 2-D simulations, the number of grain
boundary–particle intersections decreased considerably
during grain growth. In the final microstructure, many par-
f the evolution of the grain structure of a polycrystalline film containing
m size 512 · 512 · 21 g.p. (fa = 0.1). 256 · 256 · 17 grid points are shown.
ain structure. The last structure at time step 42,000 is completely pinned by
in Fig. 2.



Fig. 3. (a) Cross-section through the middle of the film of a pinned structure obtained from a 3-D simulation for fV = 0.017 and system size 512 · 512 · 21
(the same system as depicted in Figs. 1 and 2). No further evolution was observed after about 42,000 time steps. The final mean grain radius Rlim is
approximately 36 g.p. (b) Pinned microstructure obtained from a 2-D simulation for the same fraction of particles fa = 0.017 and system size 512 · 512. No
further evolution was observed after about 20,000 time steps. The final mean grain radius Rlim is approximately 30 g.p.
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Fig. 4. Schematic representations of a grain boundary pinned by a
particle: (a) a spherical particle in 3-D and (b) a circular particle in 2-D. In
3-D the particle–matrix interface and the grain boundary intersect along a
circular line with length 2prcosb, indicated by the dotted line. In 2-D the
particle–matrix interface and the grain boundary intersect at two distinct
points, indicated by a dot. In both cases, the grain boundary obtains a
dimple shape in order to balance the grain boundary tension rgb and
interfacial tensions r1

p=m and r2
p=m of the particle–matrix interface at the

intersection line or points. The angle h depends on r1
p=m, r2

p=m and rgb, and
is constant during passage of the grain boundary. The angle b increases
while the grain boundary moves from left to right. The grain boundary
breaks free from the particle for b = h/2 in 3-D and b = h in 2-D.

Fig. 2. Parallel cross-sections through the middle of the film for the system depicted in Fig. 1: (a) t = 800, (b) t = 6000 and (c) t = 42,000.
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ticles were within the grains. Notice that in the final parallel
section in Fig. 2 particles and grain boundary triple junc-
tions are connected by straight lines; hence, in thin films,
the grain boundaries have the tendency to become flat.

In Fig. 3, the final parallel section of Fig. 2 is compared
with the pinned grain structure obtained in a 2-D simula-
tion for fa = 0.017. The microstructures are very different.
In the 2-D system, most particles are in contact with a
grain boundary (/ � 1), whereas in the 3-D system many
particles lie within the grains (/ < 1). Although the fraction
of second-phase particles in both systems is equal (the
number of particles is even smaller in the 2-D system),
the 2-D grain structure is pinned faster than the 3-D
columnar structure and its final grain size is smaller. The
pinning effect of second-phase particles is obviously much
stronger in 2-D systems than in 3-D columnar structures.

3.2. Discussion

Fig. 4 gives a schematic representation of the interaction
of a grain boundary with a spherical particle in 3-D and
with a circular particle in 2-D.



Fig. 5. Perpendicular sections at different time steps of the system depicted
in Fig. 1. When a grain boundary meets a particle, it obtains an extra
curvature out of the plane of the film. Once the grain boundary has passed
the particle, it becomes columnar again.
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In 3-D, the grain boundary and the particle–matrix
interface meet each other along a circular line, which is
indicated with a dotted line in Fig. 4a. It can be analytically
calculated [10–12] that the force exerted by a spherical par-
ticle with radius r on a bypassing grain boundary equals

F 3-D
Z ¼ 2prrgb cos b cosðh� bÞ ð6Þ

with the angles h and b as indicated in Fig. 4 and rgb the
specific grain boundary energy or grain boundary tension.
The grain boundary obtains a so-called ‘dimple’ or ‘cate-
noid’ shape in order to balance the interfacial tensions
r1

p=m and r2
p=m of the particle–matrix interface and the grain

boundary tension rgb in the direction tangential1 to the
particle–matrix interface. The angle h depends on the inter-
facial tensions r1

p=m, r2
p=m and rgb, and is constant during

passage of the grain boundary. The angle b, at which the
grain boundary meets the particle, increases while the grain
boundary passes by the particle. The pinning force F 3-D

Z (6)
is maximal for b ¼ b3-D

crit ¼ h=2. When the maximum pin-
ning force is reached, an instability occurs and the grain
boundary breaks free from the particle [12,14,36,44]. Due
to the dimple shape, the particle pins the grain boundary
over a larger distance than its radius r. In the case of isotro-
pic particle–matrix interfacial tension ðr1

p=m ¼ r2
p=mÞ, h =

p/2 and the grain boundary breaks free from the particle
when b is slightly beyond b3-D

crit ¼ p=4.
In 2-D, the grain boundary and the particle–matrix

interface only meet in two singular points. The pinning
force of the particle is

F 2-D
Z ¼ 2rgb cosðh� bÞ ð7Þ

The force is maximal when the grain boundary meets the
particle at an angle b ¼ b2-D

crit ¼ h, instead of b3-D
crit ¼ h=2 in

3-D. Therefore, it is much more difficult for a grain bound-
ary to break free once it is pinned by a particle. Simulations
in Ref. [34] also show that it is more difficult for a circular
grain in 2-D than for a spherical grain in 3-D to escape
from a particle. As a consequence, after a short period of
grain growth, most of the particles are located on a grain
boundary in 2-D structures.

The consecution of perpendicular sections in Fig. 5
reveals that each time the columnar grain boundaries pass
a particle, they temporarily obtain a curvature in the
dimension perpendicular to the plane of the film. Hence,
the interaction is 3-D. The curvature is required to balance
the interfacial tensions at the triple junction where the
grain boundary and the particle–matrix interface intersect
(indicated with a dotted line in Fig. 4). The extra curvature
also contributes to the driving force for grain growth Pg

(expressed per unit of grain boundary area) [40,45]

P g ¼ argbðKk þ K?Þ ð8Þ
1 It is assumed that the particle cannot adapt its shape to balance the
interfacial tensions perpendicular to the particle–matrix interface.
with a a geometric constant and Ki and K^ the local curva-
tures, respectively, parallel with and perpendicular to the
plane of the film.

Although the second-phase particles introduce locally a
3-D effect in the grain boundary migration, the grain struc-
ture is still mainly columnar and shows 2-D grain growth
behavior. The parallel sections in Fig. 2 show that the
columnar grain boundaries easily become straight. This is
a typical 2-D feature, since the topological requirements
at triple junctions are less complicated in 2-D structures
than in 3-D structures [40,45]. Once the grain boundaries
are straight, there is no driving force left for grain bound-
ary migration. A columnar grain structure is thus probably
more easily pinned than a fully 3-D structure, despite the
3-D character of the grain boundary–particle interaction.

From Fig. 4a, it is also clear that in the case of non-
spherical particles the particles are most efficient in pinning
columnar grain boundaries when oriented with their largest
dimension perpendicular to the plane of the film.

In the above analysis, it is assumed that the grain
boundary does not go through the particle [41], that the
particle cannot change shape nor rotate [46,47] during pas-
sage of the grain boundary and that the grain boundary
has its equilibrium shape while passing by the particle.
Each of these phenomena may affect the value of the angle
h and retard the escape of the grain boundary (i.e. the grain
boundary breaks free at b > bcrit). However, the main con-
clusion remains: in 2-D structures it is more difficult for
grain boundaries to escape from particles because
b2-D

crit � 2b3-D
crit .

4. Film thickness and position of the particles

Fig. 6 presents simulation results for films with different
thicknesses. All films contained the same volume fraction
of particles, fV = 0.024, and all particles lay in the middle
of the film. Accordingly, thicker films contained more
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particles (the area fraction of the particles is higher) in
order to have the same volume fraction. The data clearly
show a transition from a 2-D towards a 3-D particle–grain
boundary interaction. The final grain size decreases with
film thickness in the 2-D regime and increases with film
thickness in the 3-D regime. Furthermore, at the transition
from 2-D to 3-D interaction behavior, there is a large
decrease in /lim the fraction of particles in contact with a
grain boundary in the final microstructure.

In the 2-D regime, the grain boundaries cannot obtain
the curvature perpendicular to the film when passing by a
particle. Here, the final grain size is in fact a function of
the area fraction of the particles and independent of the
film thickness. The decrease in final grain size with film
thickness in Fig. 6(a) is because there were more particles
in the thicker films. /lim slightly decreases with film thick-
ness in the 2-D regime, although one would expect a slight
increase, as in 2-D structures /lim increases with the area
fraction of the second-phase particles [25]. The small
0 5 10 15 20 25

20

25

30

35

l 3 (g.p.)

R
lim

 (
g.

p.
)

f
V

 = 0.024, r = 3

0 5 10 15 20 25

0.4

0.6

0.8

1

l 3 (g.p.)

φ lim

f
V

 = 0.024, r = 3

a

b

Fig. 6. (a) Final mean grain radius Rlim and (b) fraction of particles in
contact with a grain boundary in the final microstructure /lim, both as a
function of the film thickness l3. For all the simulations fV = 0.024, r = 3
and the particles were in the middle of the film. l3 = 1 refers to a 2-D
simulation.
decrease is probably due to the fact that during the very ini-
tial time steps (about 100–150 time steps), when the grain
boundary structure was not yet columnar, grain bound-
aries more frequently escaped from particles in the 3-D
films than in the 2-D structures.

In the 3-D regime, the fraction of grain boundary–par-
ticle intersections decreases and the final grain size
increases with film thickness, since in thicker films grain
boundaries more easily adapt a curvature out of the plane
of the film. Moreover, when films are thicker, more 3-D
grain growth – where the pinning effect is smaller – occurs
before the grain boundaries become columnar. For the
same volume fraction and radius of the particles, the final
grain size is larger for thicker films, although they contain
more particles per unit of film area. One may expect that
the increase in final grain size flattens for larger thicknesses
of the film. This was not, however, verified since simula-
tions for thicker films required too much computer power.

In Fig. 6, the transition from 2-D to 3-D pinning behav-
ior is at a film thickness of between 9 and 12 g.p., hence the
ratio l3/r is between 3 and 4. However, for an accurate
quantitative analysis of the transition region a finer discret-
ization grid is required. In the present study, the results
might be affected by the diffuse character of the interfaces,
as the interface of the particles and the film surface overlap
for film thicknesses up to 9 g.p. Moreover, when there are
only a few grid points between the particle and the film sur-
face, the extra curvature perpendicular to the plane of the
film is poorly reproduced and the required equilibrium
angles between the grain boundary and the particle–matrix
interface and between the grain boundary and the film sur-
face are not always obtained. Therefore the transition from
2-D to 3-D interaction behavior is probably predicted at
too high a l3/r-ratio. This discretization effect reduces for
finer grid spacings.

A striking finding from the simulations is that particles
in the middle of the film are most efficient in pinning the
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grain boundaries. Fig. 7 shows that the final mean grain
radius Rlim is consistently smaller for films where all parti-
cles are in the middle than for films where particles are ran-
domly dispersed throughout the thickness of the film. The
effect of the position of the particles is larger for increasing
film thickness and decreasing volume fraction of the parti-
cles. It was also observed in experimental studies [7–9],
although not understood. A possible explanation is that
the columnar structure is more disturbed when particles
are located randomly throughout the thickness of the film.

The simulation results in Figs. 6 and 7 show that a rela-
tion of the form (1) is too simple for thin films. Besides the
volume fraction fV and the radius r of the particles, the
thickness of the film l3 and the position of the particles
throughout the thickness of the film have a major effect
on the final grain size of polycrystalline films. For both
effects, it is important that the simulation or modelling
technique explicitly treats the evolution of the grain bound-
ary shape near grain boundary–particle intersections.

5. Comparison with experimental results

In this section, simulation results from 2-D [25] and 3-D
(present work) phase field simulations are compared with
experimental data for Al films containing H 0-CuAl2 precip-
itates obtained by Longworth and Thompson [9]. The films
were produced by electron-beam evaporation of high-pur-
ity Al, Cu and Cr on a silicon wafer coated with a SiO2

film. The initial configuration of the films is schematically
shown in Fig. 8a. Thin layers of Cu and Cr were deposited
in between two layers of Al with equal thickness. The thick-
ness of the Cu and Cr layers was varied to obtain different
volume fractions of the particles. The total thickness of the
films was always 0.75 lm. The films were subsequently
annealed at around 500 �C for 30 min. The microstructural
evolution during annealing was examined using hot-stage
transmission electron microscopy.

At the very beginning of the annealing process, the lay-
ers of Cu and Cr broke up into small islands and reacted
with the aluminum through dissolution into the aluminum
and the formation of aluminides (see Fig. 8b). Most precip-
itates were small semi-coherent H 0-CuAl2 precipitates.
They were primarily formed close to the center of the film.
Al

Al

Cu
Cr

CuAl2

Al(Cu,Cr)

a b

Fig. 8. Schematic representation of the Al films used in the experiments of
Longworth and Thompson [9]. The as-deposited configuration, with layers
of pure Al, Cu an Cr, is shown on the left. During annealing the layers of
Cu and Cr break up and react with the aluminum. The resulting
configuration is shown on the right.
The precipitate size was between 0.05 and 0.15 lm. There
were also (Cu,Cr)-aluminides, but they were believed to
have a minor contribution to the pinning of the grain
boundaries because of their small number. No considerable
dissolution or coarsening of the H 0-CuAl2 precipitates was
observed during annealing. After the break up of the layers
of Cu and Cr, the Al grains became columnar, with their
grain boundaries perpendicular to the plane of the film.
When normal grain growth was inhibited by the H 0-CuAl2
precipitates, a few grains with preferential orientation
could grow abnormally. In all cases normal grain growth
was clearly stopped prior to the start of abnormal grain
growth. In the pinned structure, the H 0-CuAl2 precipitates
were located both at grain boundaries and within the grains
(see Fig. 9).

The experimental data of Longworth and Thompson are
compared with results from phase field simulations in
Fig. 10. The experimental data were determined when nor-
mal grain growth was stopped and before the start of
abnormal grain growth. The results from 2-D simulations
are taken from Ref. [25]. These simulations were for differ-
ent initial grain size R0. For the 3-D simulations the ratio
l3/r was taken as equal to 7, which is close to the l3/r ratios
observed for the Al films. The particles were located in the
center of the film, as in the investigated Al films. Since
grain boundary energy and mobility do not appear in the
generalized Zener relation (1), no attempt was made to fit
the grain boundary energy and mobility of the simulated
systems to those of the experimentally investigated Al
films. A difference is that in the simulated systems particles
were incoherent and spherical, whereas the H 0-CuAl2 pre-
cipitates were semi-coherent and not fully spherical. The
abnormal grain growth after grain growth stagnation was
not considered in the simulations.
Fig. 9. Hot-stage transmission electron microscopy image of a grain
structure pinned by H 0-CuAl2 precipitates in an Al-alloy film (obtained by
Longworth and Thompson [9]). Particles (small dark spots) are located at
grain boundaries and in the grains. The larger dark spots are probably
unreacted islands of the Cu and Cr layer. The area fraction of the particles
is approximately 0.086.
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The experimental values for the final mean grain size
Rlim correspond best with the results obtained from 2-D
simulations. They follow an approximately f �0:5

a depen-
dence; however, they are systematically above the relation
for R0 ¼ 0. Since the precipitates were formed at the very
beginning of the experiments, prior to considerable grain
growth, it is unlikely that this deviation is due to a finite
initial grain size (cf. the analysis for R0 > 0 in Ref. [25]).
Moreover, the deviation is independent of the area fraction
of the particles, whereas the effect of initial grain size
increases with the area fraction of the particles in 2-D sys-
tems [25]. The final grain sizes obtained in the 3-D simula-
tions are much too large, though the microstructures
obtained in 3-D simulations with many particles inside
Fig. 11. (a) Image of a pinned structure obtained from a 3-D simulation for l3/
section through the middle of the film is shown. (b) Image of a pinned micros
the grains (Fig. 11a) are more realistic than those observed
in 2-D simulations (Fig. 11b).

Longworth and Thompson compared their experimental
data with different analytical theories for Zener pinning.
Because of the good correspondence with the analytical
relation for 2-D systems of Srolovitz et al. [15], they con-
cluded that the pinning effect of particles is 2-D in thin
films. However, the 3-D simulations presented in this arti-
cle indicate that the agreement with a generalized Zener
relation of the form (1) for 2-D systems is rather by coinci-
dence. In the case of thin films, there are many more
parameters that influence the final grain size. Surface
grooving, for example, results in an extra pinning of the
grain boundaries. Furthermore, the H 0-CuAl2 precipitates
were semi-coherent. These effects are not considered in a
generalized Zener relation. They were also not considered
in the 3-D simulations. Both phenomena result in lower
values for Rlim=r. Incorporation of these phenomena into
the phase field model would considerably increase its appli-
cability. It would also be interesting to account for orienta-
tion dependence of the surface energy of the grains, so that
the model can predict the abnormal grain growth observed
in the experiments.

6. Conclusions

The pinning effect of second-phase particles on grain
growth in polycrystalline films was studied by means of
3-D phase field simulations. A novel methodology that
combines the Fourier-spectral method for the dimensions
parallel with the film with a finite difference discretization
along the dimension perpendicular to the film was pro-
posed to solve the phase field equations for thin films.

Up to now, the pinning effect in thin films was always
treated with 2-D analytical models and simulations,
resulting in erroneous results. The simulations showed
that, although grain growth in thin films is essentially
2-D, the interaction of the columnar grain boundaries
with the particles is 3-D. The columnar grain boundaries
r = 7, fa = 0.08 and all particles located in the middle of the film. A planar
tructure obtained from a 2-D simulation for fa = 0.08 and R0 ¼ 0.
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temporarily obtain a curvature perpendicular to the plane
of the film when passing by a particle. Due to the 3-D
character of the pinning interaction, grain boundaries
can more easily break free from particles than in 2-D sys-
tems. As a consequence, the number of particles in con-
tact with a grain boundary is smaller and the final grain
size is larger. The microstructures obtained in 3-D simula-
tions correspond better with experimentally observed
microstructures.

The simulations predicted a transition from a 2-D to a 3-
D interaction geometry as a function of particle size and
film thickness. In the 3-D regime, the final grain size
increases and the fraction of particles in contact with a
grain boundary decreases with film thickness for a given
volume fraction and radius of the particles. Moreover,
the simulations revealed that particles in the middle of
the film are most efficient in pinning grain boundaries.
These findings are omitted in classical Zener type theories
or 2-D simulations, although they might be interesting
from an application point of view.

Comparison of the simulation results with experimental
data for thin Al-alloy films with H 0-CuAl2 precipitates
showed that the properties of the particle–matrix interface
and the surface energy of the grains have an import effect
on the pinning force of the particles and the final grain
size of the films. These effects should be considered in
future simulations in order to obtain better quantitative
predictions.

The presented model is quite demanding from a compu-
tational point of view and, as a consequence, the accuracy
of the simulation results was often restricted by limitations
in computer power. When more phenomena, like the prop-
erties of the particle–matrix interface or anistropy in grain
boundary properties, are included, the simulations will
require even more computer power. Therefore, it might be
interesting to examine the possibilities of other phase field
models to treat Zener pinning, for example the vector-val-
ued phase field model of Warren and Kobayashi [48], where
only two phase field variables are used to represent all grain
orientations in a 3-D system. Another approach would be
to develop more specific numerical techniques that exploit
the fact that for grain growth simulations the phase field
variables equal zero in most grid points.
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