The effect of ellipsoid second-phase particles on grain growth studied by three-dimensional phase field simulations

Liesbeth Vanherpe1 Nele Moelans2 Stefan Vandewalle1 Bart Blanpain2

1Department of Computer Science, K.U.Leuven
2Department of Metallurgy and Materials Engineering, K.U.Leuven

PF09 30/08 - 02/09/09 Rolduc Abbey
Grain growth in presence of second-phase particles

- polycrystalline materials
- study of grain growth: increase of mean grain size
- control grain size by addition of impurities
- pinning effect depends on volume fraction, particle shape
Zener pinning

Analytical theories

Calculation of the pinning force F_Z:

- **one particle**: analytical calculation based on
 1. position of the grain boundary
 2. particle shape and size
 3. interface energy

- **distribution of particles**: complex!
 - difficult to state how many second-phase particles lie at grain boundaries when grain growth is arrested

[Moelans et al., 2007]
Zener pinning
Analytical theories

Macroscopic effect: Zener pinning arrests normal grain growth when a limiting mean grain radius \bar{R}_{lim} is reached:

$$\frac{\bar{R}_{\text{lim}}}{r} = K \left(\frac{f_b}{f_V} \right)$$

- second-phase particle radius r
- volume fraction f_V of second-phase particles
- parameter values K and b varies among the different theories
Zener pinning

Computational studies

Results and conclusions so far:

- Monte Carlo Potts, front tracking-type and phase field simulations
- **mostly 2D simulations:**
 - most particles are in contact with a grain boundary
 - Zener relation is obeyed, with $b = 0.5$
- **3D simulations:**
 - many particles not in contact with a grain boundary
 - no agreement on parameter values in Zener relation
- **mostly sphere-shaped particles**
Phase field model for grain growth

- set of phase field variables [Chen et al., 1994]
 \[\eta_i(r, t), \quad i = 1, \ldots, p \]
- inside grain \(i \)
 \[(\eta_1, \ldots, \eta_i, \ldots, \eta_p) = (0, \ldots, \pm1, \ldots, 0) \]
- parameter \(\phi \) for the second-phase particles [Moelans et al., 2005]
 - \(\phi = 1 \) inside particles
 - \(\phi = 0 \) else
Phase field model for grain growth

- kinetic equations
 \[
 \frac{\partial \eta_i}{\partial t} = -L \frac{\delta F}{\delta \eta_i}, \quad i = 1, \ldots, p
 \]

- free energy
 \[
 F = \int_V \left(f_0(\eta_1, \eta_2, \ldots, \eta_p) + \sum_{i=1}^{p} \kappa (\nabla \eta_i)^2 \right) dV
 \]

- homogeneous free energy density
 \[
 f_0(\eta_1, \eta_2, \ldots, \eta_p) = \sum_{i=1}^{p} \left(\frac{\eta_i^4}{4} - \frac{\eta_i^2}{2} \right) + \sum_{i=1}^{p} \sum_{j>i}^{p} \eta_i^2 \eta_j^2 + \phi^2 \sum_{i=1}^{p} \eta_i^2
 \]
Phase field model for grain growth

Grain growth model

\[\frac{\partial \eta_i}{\partial t} = L \kappa \nabla^2 \eta_i - L (\eta_i^3 - \eta_i + 2 \eta_i \sum_{j \neq i} \eta_j^2 + 2 \eta_i \phi^2), \quad i = 1, \ldots, p \]

Ellipsoid particles

Spheroid particles

- long axis radius \(l \), short axis radius \(s \)
- characterize shape by aspect ratio \(r_a = \frac{l}{s} \)
- aspect ratios \(r_a = 1, 2 \) and \(3 \), with the same volume
Second-phase particles

(a) $r_a = 1$
 $l = s = 4$ grid points

(b) $r_a = 2$
 $l = 7$ g.p., $s = 3$ g.p.

(c) $r_a = 3$
 $l = 9$ g.p., $s = 3$ g.p.

After discretisation:
- approximately equal volume
- the third shape is little bit larger than the other two shapes
Discretisation

\[
\frac{\eta_i^{n+1} - \eta_i^n}{\Delta t} = \left[\left(\kappa \nabla^2 \eta \right)^{n+1} + \left(\eta_i^3 + \eta_i - 2 \eta_i \left(\sum_j \eta_j^2 + \phi_j^2 \right) \right) \right]_i,
\]

\(i = 1, \ldots, p\)

- finite difference scheme
 - spatial derivative is discretised with second order central differences
 - time derivative is discretised using a first order semi-implicit scheme
- periodic boundary conditions are assumed
Bounding box algorithm

Basic elements

- A grain is a set of connected grid points r where $|\eta(r)| > \epsilon$
- For each grain, the corresponding bounding box is the smallest cuboid containing the grain

Algorithm

- Solve the equations only locally, inside bounding boxes
- Only values inside boxes are kept in memory
- Boxes grow or shrink with grain

Parallel computing

Model equations

\[\frac{\partial \eta_i}{\partial t} = L \left(\kappa \nabla^2 \eta_i + \eta_i^3 + \eta_i - 2 \eta_i \left(\sum_{j} \eta_j^2 + \phi^2 \right) \right), \quad i = 1, \ldots, p \]

Distribution of memory and work load

▶ bounding boxes spread over processors
 ▶ every processor \(P_k \) handles set of bounding boxes
▶ communication
 ▶ every processor \(P_k \) computes partial sum \(S_k = \sum_{j=a_k}^{b_k} \eta_j^2 \)
 ▶ summation of \(S_k \) through MPI_Allreduce-operation

Vanherpe, Monlans, Vandewalle, Blanpain
Effect of second-phase particles on grain growth
Parallel computing

Model equations

\[\frac{\partial \eta_i}{\partial t} = L (\kappa \nabla^2 \eta_i + \eta_i^3 + \eta_i - 2\eta_i \left(\sum_{j}^{p} \eta_j^2 + \phi^2 \right)), \quad i = 1, \ldots, p \]

Distribution of memory and work load

- bounding boxes spread over processors
 - every processor \(P_k \) handles set of bounding boxes
- communication
 - every processor \(P_k \) computes partial sum \(S_k = \sum_{j=k}^{b_k} \eta_j^2 \)
 - summation of \(S_k \) through \texttt{MPI_Allreduce-operation}
Initialisation: grains and particles

- for every η_i, with $i = 1, \ldots, p$
 1. choose grid point g according to uniform distribution
 2. create sphere-shaped grain with centre g and radius s
 3. determine bounding box

- add particles until f_V is obtained:
 1. choose grid point g according to uniform distribution
 2. choose orientation according to uniform distribution over three orientations: parallel with x-, y- or z-axis
 3. generate spheroid particle with centre g: set $\phi = 1$
 inside particle volume

- set up data structure
Simulation parameters

- system size
 - $256 \times 256 \times 256$ grid
 - $p = 25000$
- discretisation parameters
 - $\Delta x = 1, \Delta t = 0.2$
 - $\epsilon = 10^{-5}$
- material parameters
 - $\kappa = 0.5, L = 1$
 - volume fractions $f_V = 6\%, 8\%, 10\%$ and 12%
 - aspect ratios $r_a = 1, 2$ and 3
- for every parameter combination: three simulation runs
- parallel computing: 12 processors
Growth kinetics

- for higher f_V, limiting grain size is reached sooner
- particles with $r_a = 3$ have strongest pinning effect
- smaller difference between $r_a = 1$ and $r_a = 2$
Vanherpe, Moelans, Vandewalle, Blanpain

Effect of second phase particles on grain growth

Cross-sections

$f_V = 6\%$
$r_a = 2$

$f_V = 6\%$
$r_a = 3$

$f_V = 12\%$
$r_a = 2$

$f_V = 12\%$
$r_a = 3$
Particle location

- fraction of particles ϕ_{101} located at boundaries subdivided into four types:
 - ϕ_2: at grain faces
 - ϕ_3: where three grains meet
 - ϕ_4: where four grains meet
 - ϕ_n: where more than four grains meet

(a) $r_a = 1$ (b) $r_a = 2$ (c) $r_a = 3$
Particle location

(a) \(r_a = 1 \)
(b) \(r_a = 2 \)
(c) \(r_a = 3 \)

- For \(r_a = 1 \) and \(r_a = 2 \):
 - \(\phi_{\text{tot}} \) increases with \(f_v \), mainly due to increase of \(\phi_3 \) and \(\phi_4 \)
 - \(\phi_2 \) more or less independent of \(f_v \)
 - \(\phi_n \) negligible

- For \(r_a = 3 \):
 - \(\phi_2 \) decreases with \(f_v \)
 - Strong increase of \(\phi_n \) with \(f_v \)
Zener relation fit

The presence of second-phase particles inhibits grain growth when a limiting mean grain size radius \bar{R}_{lim} is reached:

$$\frac{\bar{R}_{\text{lim}}}{r} = K \frac{1}{f_V^b}$$

- replace particle radius r by parameter m and apply
 - $m = s$: short axis radius
 - $m = l$: long axis radius
 - $m = (ls^2)^{1/3}$: geometric average
- Ideally, for the relation to have predictive value, the graphs of the three aspect ratios should coincide.
Zener relation fit

The presence of second-phase particles inhibits grain growth when a limiting mean grain size radius \bar{R}_{lim} is reached:

$$\frac{\bar{R}_{\text{lim}}}{m} = K \frac{1}{f_b}$$

- replace particle radius r by parameter m and apply
 - $m = s$: short axis radius
 - $m = l$: long axis radius
 - $m = (ls^2)^{\frac{1}{3}}$: geometric average
- Ideally, for the relation to have predictive value, the graphs of the three aspect ratios should coincide.
Zener relation fit

(a) $m = s$

(b) $m = l$

(c) $m = (ls^2)^\frac{1}{3}$

Fig. (a): graphs surprisingly close to each other
Fig. (b): graphs distinctly separated
Fig. (c): graphs for $r_a = 1$ and $r_a = 2$ almost coincide; graph for $r_a = 3$ lower
Comparison with other studies

- Experimental graphs below graphs for spherical particles
- Data points $r_a = 1$
 - Coincide with MC results
 - Slightly below PFM results
- Data points $r_a = 3$ closer to experiments
Conclusions

Effect of particles with a spheroid shape on grain growth

- particles with $r_a = 1$ and $r_a = 2$: similar behaviour
- particles with $r_a = 3$: stronger pinning effect
 - at higher f_V: tendency to lie where more than two grains meet rather than at grain boundary faces
 - larger impact on topology