

New directions in phase-field modeling of microstructure evolution in polycrystalline and multi-component alloys

Nele Moelans

Liesbeth Vanherpe, Jeroen Heulens, Bert Rodiers

K.U. Leuven, Belgium

'Quantitative' phase-field models

- Properties bulk and interfaces are reproduced accurately in the simulations
 - Effect model description and parameters
 - Numerical issues
- Insights in the evolution of complex morphologies and grain assemblies
 - Effect of individual bulk and interface properties
- Predictive ?
 - Depends on availability and accuracy of input data
 - Requires composition and orientation dependence

General framework and goal

Some aspects of model formulation

- 2-phase systems (single phase-field)
- Multi-grain/phase systems (multiple phase-field)

2-phase systems

• Field variables: $\phi(\vec{r},t) = c_k(\vec{r},t)$

$$g(\phi) = 16\phi^{2}(1-\phi)^{2}$$

$$1 = 16\phi^{2}(1-\phi)^{2}$$

$$0 = 16\phi^{2}(1-\phi)^{2}$$

$$0 = 16\phi^{2}(1-\phi)^{2}$$

Double well function

Free energy

$$F = \int_{V} \left[f_{chem}(c,\phi) + \underbrace{Wg(\phi) + \frac{\varepsilon^{2}}{2} |\nabla\phi|^{2}}_{Interfacial \ energy} \right] d\vec{r}$$

• Bulk energy $f_{chem} = h(\phi) f^{\beta}(c,T) + \left[1 - h(\phi)\right] f^{\alpha}(c,T)$

LEUVEN Decoupling bulk and interfacial energy

- Interface treated as mixture of 2 phases
 - c-field for each phase $c \rightarrow c^{\alpha}, c^{\beta}$
 - Equal interdiffusion potential + conservation

$$\begin{cases} \frac{\partial f^{\beta}(c^{\beta})}{\partial c^{\beta}} = \frac{\partial f^{\alpha}(c^{\alpha})}{\partial c^{\alpha}} = \tilde{\mu}\\ c = h(\phi)c^{\beta} + \left\lceil 1 - h(\phi) \right\rceil c^{\alpha} \end{cases}$$

Kim et al., PRE, 6 (1999) p 7186; Tiaden et al., Physica D, 115 (1998) p73

• Bulk energy

$$\Rightarrow f_{chem} = h(\phi) f^{\beta}(c^{\beta}) + \left[1 - h(\phi)\right] f^{\alpha}(c^{\alpha})$$

KATHOLIEKE UNIVERSITEIT

Decoupling bulk and interfacial kinetics

- Kinetic equations (Linear non-equilibrium thermodynamics)
 - Allen-Cahn $\frac{\partial \varphi}{\partial r} = -M_{\varphi} \frac{\partial F}{\partial r}$

Diffusion

$$\frac{\partial t}{\partial t} = \nabla \cdot \sum_{l=1}^{C-1} \left[h(\phi) M_{kl}^{\beta} + [1 - h(\phi)] M_{kl}^{\alpha} \right] \nabla \tilde{\mu}_{l}$$

Jump in chemical potential accross interface

$$\frac{\partial c_{k}}{\partial t} = \nabla \cdot [1 - h(\phi)] \sum_{l=1}^{C-1} M_{kl}^{L} \nabla \tilde{\mu}_{l} + \nabla \cdot \alpha_{i} \frac{\partial \phi}{|\partial t| |\nabla \phi|} \frac{\nabla \phi}{|\nabla \phi|}$$
Non-variational anti-trapping current

Dilute, D_S=0: A.Karma, PRL, 87, 115701 (2001); B. Echebarria et al., PRE, 70, 061604 (2004)
 Multi-comp, D_S=0: S.G. Kim, Acta Mater. 55, p4391 (2007)

Multi-grain and multi-phase structures

 Single phase-field models -> Multiple phase-field models

 $\eta \rightarrow \left\{ \eta_1, \eta_2, \eta_3, ..., \eta_p \right\}$

 $(\eta_1, \eta_2, ..., \eta_i, ..., \eta_p) = (0, 0, ..., 1, ..., 0)$

Model extension

KATHOLIEKE UNIVERSITEIT

EUVE

 $F(\eta_1, \eta_2, \eta_3, ..., |\nabla \eta_1|^2, |\nabla \eta_2|^2, ...)$

- Different types of interfaces
- Triple and higher order junctions
- Numerically
 - Same accuracy for all interfaces and phases
 - All interfaces within range of validity of the thin interface asymptotics

$$\rightarrow \ell_{num} = cte$$

Multi-grain and multi-phase models: major difficulties

- Third-phase contributions
 - $σ_{12} = σ_{13} = 7/10 σ_{12}$

- → Careful choice of multi-well function and gradient contribution
- Interpolation function
 - Zero-slope at equilibrium values of the phase fields
 - Thermodynamic consistency

$$f_{chem} = \sum_{i=1}^{p} h_i(\eta_1, \eta_2, ...) f^i(c, T) \implies \sum_{i=1}^{p} h_i(\eta_1, \eta_2, ...) = 1$$

Anisotropic grain growth model

- Phase fields $\eta_1, \eta_2, ..., \eta_i(\vec{r}, t), ..., \eta_p$
 - With grain i

 $(\eta_1, \eta_2, ..., \eta_i, ..., \eta_p) = (0, 0, ..., 1, ..., 0)$

• Free energy

$$F_{interf} = \int_{V} m \left(\sum_{i=1}^{p} \left(\frac{\eta_i^4}{4} - \frac{\eta_i^2}{2} \right) + \sum_{i=1}^{p} \sum_{j < i}^{p} \gamma_{i,j} \eta_i^2 \eta_j^2 + \frac{1}{4} \right) + \frac{\kappa(\eta)}{2} \sum_{i=1}^{p} (\nabla \eta_i)^2 dV$$

$$\boldsymbol{\kappa}(\boldsymbol{\eta}) = \sum_{i=1}^{p} \sum_{j < i}^{p} \boldsymbol{\kappa}_{i,j} \boldsymbol{\eta}_{i}^{2} \boldsymbol{\eta}_{j}^{2} / \sum_{i=1}^{p} \sum_{j < i}^{p} \boldsymbol{\eta}_{i}^{2} \boldsymbol{\eta}_{j}^{2}$$

• For each grain boundary
$$\eta_i^2 \eta_j^2 \neq 0 \Rightarrow \kappa(\eta) = \kappa_{i,j}$$

Inclination dependence

$$\gamma_{i,j}\left(\boldsymbol{\psi}_{i,j}\right), \boldsymbol{\kappa}_{i,j}\left(\boldsymbol{\psi}_{i,j}\right), \boldsymbol{L}_{i,j}\left(\boldsymbol{\psi}_{i,j}\right), \qquad \boldsymbol{\psi}_{i,j} = \frac{\nabla \boldsymbol{\eta}_{i} - \nabla \boldsymbol{\eta}_{j}}{|\nabla \boldsymbol{\eta}_{i} - \nabla \boldsymbol{\eta}_{j}|}$$

L.-Q. Chen and W. Yang, PRB, 50 (1994) p15752 A. Kazaryan et al., PRB, 61 (2000) p14275

Nele Moelans Third annual workshop HERO-M, Saltsjöbaden, Sweden, May 17-18, 2010

10

Non-variational approach – equal interface width

Ginzburg-Landau type equations

$$\frac{\partial \eta_i(\vec{r},t)}{\partial t} = -L(\eta) \left[m \left(\eta_i^3 - \eta_i + 2\eta_i \sum_{j \neq i} \gamma_{i,j} \eta_j^2 \right) - \kappa(\eta) \nabla^2 \eta_i \right]$$

- Non-variational with respect to η-dependence of κ
- Similar to Monte Carlo Potts approach
- Definition 'grain boundary width'

$$l_{num} = \frac{1}{\left|\frac{d\eta_i}{dx}\right|_{max}} = \frac{1}{\left|\frac{d\eta_j}{dx}\right|_{max}}$$

→High controllability of numerical accuracy ($I_{num}/R < 5$)

Grain boundary properties

Grain boundary energy

$$\gamma_{gb,\theta_{i,j}} = g(\gamma_{i,j}) \sqrt{m\kappa_{i,j}}$$

Grain boundary mobility

 $\mu_{gb,\theta_{i,j}} = L_{i,j} \sqrt{\frac{\kappa_{i,j}}{m(g(\gamma_{i,j}))^2}}$

Grain boundary width

$$l = \frac{4}{3} \sqrt{\frac{\kappa_{i,j}}{m(g(\gamma_{i,j}))^2}}$$

 $g(\gamma_{i,i})$ calculated numerically

• Iterative algorithm

$$\ell_{gb}, [\gamma_{gb,\theta}], [\mu_{gb,\theta}] \to m, [\kappa_{i,j}], [\gamma_{i,j}], [L_{i,j}]$$

N. Moelans, B. Blanpain, P. Wollants, PRL, 101, 0025502 (2008); PRB, 78, 024113 (2008)

Numerical validation

- Diffuse interface effects for ℓ_{num} / R > 5
- Angles outside [100°-140°] require larger ℓ_{num} / Δx for same accuracy

Nele Moelans Third annual workshop HERO-M, Saltsjöbaden, Sweden, May 17-18, 2010

15

Variational approach – interface width varies with interface energy

1 r P

- Anisotropy only through $\gamma_{i,p}$ κ =cte 0
 - Energy •
 - **Kinetic equations** \odot

$$F = \int_{V} \left[m \left(\sum_{i=1}^{p} \left(\frac{\eta_{i}^{4}}{4} - \frac{\eta_{i}^{2}}{2} \right) + \sum_{i=1}^{p} \sum_{j < i}^{p} \gamma_{i,j} \eta_{i}^{2} \eta_{j}^{2} + \frac{1}{4} \right) + \frac{\kappa}{2} \sum_{i=1}^{p} (\vec{\nabla} \eta_{i})^{2} \right] dV$$
$$\frac{\partial \eta_{i}(\vec{r}, t)}{\partial t} = -L(\eta) \left[m \left(\eta_{i}^{3} - \eta_{i} + 2\eta_{i} \sum_{j \neq i} \gamma_{i,j} \eta_{j}^{2} \right) - \kappa \nabla^{2} \eta_{i} \right]$$

0

Rotation invariance of the model

- Mathematically, the model equations are invariant to rotation, but ...
- the order parameters represent <u>orientations</u> in a fixed reference frame.

• For the model to be rotational invariant in practice, lower limit of amount of order parameters p: $\sqrt{2}\pi L$

$$p > \frac{\sqrt{2}\pi L}{n\Delta h}$$

J. Heulens and N. Moelans, Scripta Mat. (2010)

•

Extension to multi-component multiphase alloys

• Phase field variables:

Composition

• Grains

$$\eta_{\alpha 1}, \eta_{\alpha 2}, ..., \eta_{\alpha i}(\vec{r}, t), ..., \\\eta_{\beta 1}, \eta_{\beta 2}, ..., \eta_{p} \\\vec{c}_{A}, \vec{c}_{B}(\vec{r}, t), ..., \vec{c}_{C-1}$$

• Bulk energy:
$$f_{bulk}(c_k,\eta_{\rho i}) = \sum_{\rho} \phi_{\rho} f^{\rho}(c_k^{\rho})$$

• with

Nele Moelans Third annual workshop HERO-M, Saltsjöbaden, Sweden, May 17-18, 2010 $\sum \eta_{
ho i}^2$

 $\sum \eta_{\pi i}^2$

Extension to multi-component multiphase alloys

• Bulk and interface diffusion:

Vith
$$M_k^{\rho} = \frac{D_k^{\rho}}{\frac{\partial^2 f_m^{\rho}}{\partial x_k^2}}$$
 and

$$\frac{\partial x_k}{\partial t} = \nabla \cdot \left[\left(\sum_{\rho} \phi_{\rho} M_k^{\rho} + \sum_{\rho, i \neq \sigma, j} \eta_{\rho, i}^2 \eta_{\sigma, j}^2 \right) \nabla \mu_k \right]$$

$$M_{interf} = 3 \left(\frac{D_{interf}}{\partial^2 f^m / \partial x_k^2} \right) \left(\frac{\delta_{gb}}{\delta_{num}} \right)$$

• Interface movement:

$$\frac{\partial \eta_{i\rho}}{\partial t} = -L \frac{\delta F(\eta_{i\rho}, x_k)}{\delta \eta_{i\rho}}$$

• Between phase α and β

$$\frac{\partial \eta_{\alpha i}}{\partial t} = -L \left(\underbrace{2\eta_{\alpha i}\eta_{\beta j}^{2}}_{(\eta,\nabla\eta)} + \underbrace{2\eta_{\alpha i}\eta_{\beta j}^{2}}_{(\eta_{\alpha}^{2} + \eta_{\beta}^{2})^{2}} \underbrace{f^{\alpha}(c^{\alpha}) - f^{\beta}(c^{\beta}) - (c^{\alpha} - c^{\beta})\mu}_{Bulk \ energy \ driven} \right)$$
Curvature driven
$$Bulk \ energy \ driven$$

Numerical validation for multicomponent multi-phase model

Bounding Box Implementation

• Basic elements

- A grain is set of connected grid points r where |eta_i(r)| > epsilon
- For each grain, the corresponding bounding box is the smallest cuboid containing the grain

Algorithm

Solve the equations only locally, inside bounding boxes Only values inside boxes are kept in memory Boxes grow or shrink with grain

Object Oriented C++ implementation

In collaboration with L. Vanherpe and S. Vandewalle, K.U. Leuven (*Vanherpe et al., PRE, 76, n°056702 (2007)*)

Application examples

 Grain growth in anisotropic systems with a fiber texture

In collaboration with F. Spaepen, Harvard University

Grain growth in columnar films with fiber texture

- Grain boundary energy:
 - Fourfold symmetry
 - Extra cusp at θ = 37.5°
 - Read-shockley

Discrete orientations

 $\eta_1, \eta_2, ..., \eta_i(r, t), ..., \eta_{60} \Rightarrow \Delta \theta = 1.5^\circ$

- Constant mobility
- Initially random grain orientation and grain boundary type distributions

2D simulation

White: $\theta = 1.5$ *Gray:* $\theta = 3$ *Red:* $\theta = 37,5$ *Black:* $\theta > 3, \theta \neq 37.5$

Simulations: 1 high-angle energy cusp

- High-angle grain boundaries form independent network
- Low-angle grain boundaries follow movement of high-angle grain boundaries → elongate
- No stable quadruple junctions

White: $\theta = 1.5$ Gray: $\theta = 3$ Black: $\theta > 3$, $\theta \neq 37.5$ Red: $\theta = 37,5$

 \mathbf{O}

Misorientation distribution function (MDF)

Area weigthed MDF --t=0.25(s) θ=1.5° 0.15 -•--t=90 ·θ=37.5° 0.15 ----t=250 θ=3° Length density 2000 Length density ▼ t=418 θ**=36°** t=490 θ**=39°** 0.1 θ**=4.5°** 0.05

40

Read-Shockley + cusp at θ = 37.5 °

200

Time (s)

100

0

300

Reaches a stead-state

20

Misorientation θ (°)

30

• Low energy boundaries lengthen + their number increases

10

0L 0

500

400

• Grain growth exponent

 PFM: steady-state growth with
 n ≈ 1

- Previous findings: n = 0.6...1
- Mean field analysis:

$$n_{eff} = \frac{kt}{A_h(0) + kt} \to 1, t \to \infty$$
$$k_{eff} = \frac{dA_{eff}}{dt} = \frac{k}{1 + N ? N}$$

Read-Shockley (θ_m =15°) + cusp at θ =37.5°

N. Moelans, F. Spaepen, P. Wollants, Phil. Mag., 90 p 501-523 (2010)

Application examples

 Coarsening of Al₆Mn precipitates located on a recrystallization front in Al-Mn alloys

In collaboration with A. Miroux, E. Anselmino, S. van der Zwaag, T. U. Delft

Jerky motion during recrystallization in Al-Mn alloy

- In-situ EBSD observation of recrystallization in AA3103 at 400 °C
 - CamScan X500 Crystal Probe FEGSEM
- Jerky grain boundary motion
 - Stopping time: 15-25 s
 - Pinning by second-phase precipitates
 - $AI_6(Fe,Mn)$, α - $AI_{12}(Fe,Mn)_3Si$
- Added to phase field model
 - Grain boundary diffusion
 - Driving force for recrystallization

20µm

Phase field model

• Multiple order parameter $\eta_{m,1}(\vec{r},t), \eta_{m,2}(\vec{r},t), ..., \eta_{p,i}(\vec{r},t), ...$ representation:

 $(\eta_{m,1},\eta_{m,2},...,\eta_{p,i},...) = (1,0,...,0,...), (0,1,...,0,...), ...(0,0,...,1,...), ...$

- Mn composition field: $x_{Mn}(r,t)$
- Homogeneous driving pressure for recrystallization: m_d
- Bulk diffusion + Surface diffusion

Material properties at 723K

Grain boundary energy high angle	$\gamma_h = 0.324 \text{ J/m}^2$
Interfacial energy Al ₆ Mn precipitates	$\gamma_{\rm pr}=0.3~J/m^2$
Mobility high angle grain boundary	$M_{h} = 2.94 \cdot 10^{-11} \text{ m}^2 \text{s/kg}$
At solute content 0.3w% Mn	(Miroux et al.,Mater. Sci. Forum,467-470,393(2004))
Equilibrium composition of matrix	c _{Mn,eq} = 0.0524 w% (0.02456 at%)
	(PhD thesis Lok 2005)
Actual composition of matrix	c _{Mn} = 0.3 w% (0.1474 at%)
(supersaturated)	(PhD thesis Lok 2005)
Mn diffusion in fcc Al	$D_{0,bulk} = 10^{-2} \text{ m}^2/\text{s}, \text{ Q}_{bulk} = 211 \text{ kJ/mol}$
	→D _{bulk} = 5.5973·10 ⁻¹⁸ m²/s
Pipe diffusion high angle boundaries,	$D_{0,p} = D_{0,bulk}, \ Q_p = 0.65 Q_{bulk}$
precipitate/matrix interface	$\rightarrow D_{p} = 1.2195 \cdot 10^{-12} m^{2}/s$
Bulk energy density: $f^{\rho} = A^{\rho}(x-x^{\rho}_{0})^{2}$	$A^m = 6 \cdot 10^{11}; x^m_0 = 0.000258$
	$A^{p} = 6 \cdot 10^{12}; x^{p}_{0} = 0.1429$

Precipitate coarsening and unpinning

- $P_D < P_{ZS} (P_D \approx P_{ZS})$
 - Pinning: P_{zs}=3.6 MPa
 - Rex: P_D=3.1 MPa

 Unpinning mainly through surface diffusion around precipitates

• **P**_D <<< **P**_{ZS}

KATHOLIEKE UNIVERSITEIT

Ы

- Pinning: P_{zs} = 3.6 MPa
- Rex: P_D = 1.1 MPa

 Unpinning through grain boundary diffusion

Application examples

 Coarsening and diffusion controlled growth in leadfree solder joints

> Within the framework of COST MP-0602 (Advanced Solder Materials for High Temperature Application), Chairs A. Kroupa and A. Watson

LEUVEN Coarsening in Sn(-Ag)-Cu solder joints

- IMC formation and growth precipitate growth Kirkendal voids stresses – grain boundary diffusion
 - CALPHAD description
 - Diffusion coefficients, growth coefficient for IMC-layers

SEM-image of Sn – 3.8Ag–0.7 Cu alloy after annealing for 200h at 150 ℃ (Peng 2007)

KATHOLIEKE UNIVERSITEIT

Phase field model

- **Multiple order parameter model:** 0
 - Grains and phases \bullet

 $\eta_{(Cu),1}, \eta_{(Cu),2}, ..., \eta_{(Cu),i}(r,t), ...,$ $\eta_{Cu_3Sn,1}, \eta_{Cu_3Sn,2}, \dots$ $\eta_{Cu_6Sn_5,1},\eta_{Cu_6Sn_5,2},\ldots$

 $\eta_{(Sn),1}, \eta_{(Sn),2}, \dots \eta_{(Sn)i}, \dots$

- with $(\eta_{(Cu),1}, \eta_{(Cu),2}, ..., \eta_{\rho,i}, ...) =$ (1,0,...,0,...), (0,1,...,0,...),...(0,0,...,1,...),...

Composition field: $x_{sn}(\vec{r},t)$ 0

Nele Moelans Third annual workshop HERO-M, Saltsjöbaden, Sweden, May 17-18, 2010

 $\eta_{(CQ,i)}$

CALPHAD Gibbs energies

• COST 531-v3-0 database (+ parabolic extensions)

A. Dinsdale, et al. COST 531-Lead Free Solders: Atlas of Phase Diagrams for Lead-Free Soldering, vols. 1,2 (2008) ESC-Cost office

IMC-layer growth (1D)

Comparison with experimental data

Cu3Sn, T = 180 °C

Parabolic growth constant experiments

Т	k_Cu3Sn	k_Cu6Sn5
150 ℃	0.0010 10 ⁻⁶	0.00032 10 ⁻⁶
180 ℃	0.0032 10 ⁻⁶	0.0038 10 ⁻⁶
200 ℃	0.0043 10 ⁻⁶	0.0071 10 ⁻⁶

Cu6Sn5, T = 180 ℃

Parabolic growth constant in simulations with

$$D_{Sn}^{(Cu)} = 10^{-25} \text{ m}^{2}/\text{s}$$

$$D_{Sn}^{Cu3Sn} = 10^{-15} \text{ m}^{2}/\text{s}$$

$$D_{Sn}^{Cu6Sn5} = 10^{-15} \text{ m}^{2}/\text{s}$$

$$k_{Cu3Sn} = 0.0023 \cdot 10^{-6}$$

$$k_{Cu6Sn5} = 0.0073 \cdot 10^{-6}$$

$$D_{Sn}^{(Sn)} = 10^{-12} \text{ m}^{2}/\text{s}$$

$$J. Janckzak, EMPA$$

Nele Moelans

Effect of grain boundary diffusion

 $D_{Sn}^{(Cu)} = 2 \cdot 10^{-25}, *2 \cdot 10^{-25} \text{ m}^2/\text{s}$ $D_{Sn}^{Cu3Sn} = 2 \cdot 10^{-15}, *2 \cdot 10^{-13} \text{ m}^2/\text{s}$ $D_{Sn}^{Cu6Sn5} = 2 \cdot 10^{-15}, *2 \cdot 10^{-13} \text{ m}^2/\text{s}$ $D_{Sn}^{(Sn)} = 2 \cdot 10^{-12}, *2 \cdot 10^{-12} \text{ m}^2/\text{s}$

 $\gamma_{gb} = 0.25$ J/m²

Growth behavior Cu₃Sn ?

Conclusions

- What do we need next to improve the quantitative accuracy of phase-field models ?
 - Accurate representation of triple-junction angles outside [100°-140°]
 - CALPHAD Gibbs energies over full composition domain, also for stoichiometric phases and metastable regions
 - Composition and orientation dependent expressions for diffusion and interfacial properties

Thank you for your attention !

- Acknowledgements
 - Postdoctoral fellow of the Research Foundation Flanders (FWO-Vlaanderen)
 - Simulations were performed on the Flemisch Super Computer (VSC)
 - Projects
 - OT/07/040 (Quantitative phase field modelling of coarsening in leadfree solder joints)
 - IUAP Program DISCO (Dynamical Systems, Control, and Optimization
 - IWT grant SB-73163 (Phase-Field Modelling of the Solidification of Oxidic Systems)

• More information on http://nele.studentenweb.org

WORKSHOP

'Multiscale simulation of heterogeneous materials and coupling of thermodynamic models' January 12-14, 2011

	Home	Program	Registration	Venue	Sponsors	Contact				
50 200	PROGRAM	PROGRAM								
	Confirmed spe	Confirmed speakers:								
	Mathematical	Mathematical multiscale techniques								
	Serge Prudhor	nme (Institute Austin, Goal-or	(Institute for Computational Engineering and Sciences, University of Texas at Austin, USA) Goal-priented adaptivity for multiscale coupling methods							
	Mitchell Luskin (School of Mathematics TBA									
	Frederic Legol	I (CERMI TBA	(CERMICS, ENPC, Paris, France) TBA							
	Marc Geers	(Mecha Netherla TBA	(Mechanical Engineering, Eindhoven University of Technology, the Netherlands) TBA							
	Tim Schulze	(Dept. o Kinetic I	(Dept. of Mathematics, University of Tennesssee, USA) Kinetic Monte Carlo simulation of heterostructured nanocrystalline growth							
	Aleksander Do	nev (Courar Coarse	(Courant Institute, New York University, USA) Coarse-grained particle, continuum and hybrid models for complex fluids							
Webpage:										
	Thermodynamic techniques/Alloys									
http://www.cs.kuleuven.be /conference/multiscale11/	Chris Wolverto	on (Dept. o TBA	of Materials Science a	nd Engineering	, Northwestern Un	iversity, USA)				
	Xavier Gonze	(Physic Louvain TBA	(Physical Chemistry and Physics of Materials, Université Catholique de Louvain, Belgium) TBA							
	Carolyne Cam	p bell (NIST/M Develop Process	(NIST/Metallurgy Division, USA) Development of Multicomponent Diffusion Mobility Databases for Industrial Processing							

Multi-grain and multi-phase models

- Multi-phase-field model 0
 - Phase fields $\varphi_1, \varphi_2, \varphi_3, ..., \varphi_p, \quad \sum \varphi_i = 1$
 - **Free energy** •

$$f_{\text{int}} = \sum_{i \neq j} \frac{4\sigma_{i,j}}{\eta_{i,j}} \left\{ \frac{\eta_{i,j}^2}{\pi^2} | \nabla \phi_i \cdot \nabla \phi_j | + \phi_i \phi_j \right\}$$

$$0 < \phi_{i,j} <$$

- Double obstacle, higher order terms, gradient term non-variational
- Interpolation: zero-slope or thermodynamic consistency

Steinbach et al.

MICRESS phase-field code

H. Garcke, B.Nestler, B. Stoth, SIAM J. Appl. Math. 60 (1999) p 295.

L.-Q. Chen and W. Yang, PRB, 50 (1994) p15752

A. Kazaryan et al., PRB, 61 (2000) p14275

- Multi-order parameter models lacksquare

 - Order parameters $\eta_1, \eta_2, ..., \eta_i(\vec{r}, t), ..., \eta_p, \quad \left(\sum_{i=1}^p \eta_i \neq 1\right)$ 61 (200) Interfacial energy $f_{int} = m \left(\sum_{i=1}^p \left(\frac{\eta_i^4}{4} \frac{\eta_i^2}{2}\right) + \sum_{i=1}^p \sum_{j < i}^p \gamma_{i,j} \eta_i^2 \eta_j^2 + \frac{1}{4}\right) + \frac{\kappa(\eta)}{2} \sum_{i=1}^p \sum_{j < i}^p \eta_j \eta_j^2 \eta_j^2 + \frac{1}{4} + \frac{\kappa(\eta)}{2} \sum_{i=1}^p \sum_{j < i}^p \eta_j \eta_j^2 \eta_j^2 + \frac{1}{4} + \frac{\kappa(\eta)}{2} \sum_{i=1}^p \sum_{j < i}^p \eta_j \eta_j^2 \eta_j^2 + \frac{1}{4} + \frac{\kappa(\eta)}{2} \sum_{j < i}^p \eta_j \eta_j^2 \eta_j^2 + \frac{1}{4} + \frac{\kappa(\eta)}{2} \sum_{j < i}^p \eta_j \eta_j^2 \eta_j^2 + \frac{1}{4} + \frac{\kappa(\eta)}{2} \sum_{j < i}^p \eta_j \eta_j^2 \eta_j^2 + \frac{1}{4} + \frac{\kappa(\eta)}{2} \sum_{j < i}^p \eta_j \eta_j^2 \eta_j^2 \eta_j^2 + \frac{1}{4} + \frac{\kappa(\eta)}{2} \sum_{j < i}^p \eta_j \eta_j^2 \eta_j^2 \eta_j^2 + \frac{1}{4} + \frac{\kappa(\eta)}{2} \sum_{j < i}^p \eta_j \eta_j^2 \eta_j^2 \eta_j^2 + \frac{1}{4} + \frac{\kappa(\eta)}{2} \sum_{j < i}^p \eta_j \eta_j^2 \eta_j^2 \eta_j^2 \eta_j^2 + \frac{1}{4} + \frac{\kappa(\eta)}{2} \sum_{j < i}^p \eta_j \eta_j^2 \eta$

Multi-grain and multi-phase models

- Vector valued model
 - Orientation field (ϕ) and phase field (ϕ)
 - Free energy $f_{\text{int}} = f(\phi, |\nabla \phi|, |\nabla \theta|)$
- 2-phase solidification
 - Phase fields

$$\varphi_1, \varphi_2, \varphi_3, \quad \sum_{i=1}^{3} \varphi_i = 1$$

- Fifth order interpolation functions $g_i(\phi_1, \phi_2, \phi_3)$
 - Zero-slope and thermodynamic consistent
 - Order g_i increases with number of phase-fields
- Multi-order parameter + 4th order gradient terms
- I.M. McKenna, M.P. Gururajan, P.W. Voorhees, J. Mater. Sci., 44 (2009) p2206
- Phase field crystal and amplitude equations

Nele Moelans Third annual workshop HERO-M, Saltsjöbaden, Sweden, May 17-18, 2010

R. Kobayashi, J.A. Warren, W.C. Carter, Physica D, 119 (1998) p415

R. Folch and M. Plapp, PRE, 72 (2005) n ° 011602

Bounding Box Algorithm

- Initialization by random nucleation
 - Generate sphere-shaped grain uniformly over microstructure
 - Generate particles uniformly over microstructure
- Set-up sparse data structure
 - Determine bounding box for every grain
 - Create object for every grain

