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Abstract 

 

A quantitative phase-field model for the evolution of polycrystalline structures is presented.  The 

model is able to treat concurrently grain growth, Ostwald ripening and growth driven by the 

relative stabilities of the bulk phases.  The model allows the specification of energy and mobility 

for each interface individually.  Simulation results are discussed for 3 industrially relevant 

applications, namely grain growth in the presence of second-phase particles, anisotropic grain 

growth in systems with a fiber texture and diffusion and coarsening of lead-free solder joints.  

 

Introduction 

 
Many materials of industrial relevance are multi-component, consist of several phases 

with a different crystal structure and/or several grains with a different crystal orientation.   

Especially at elevated temperatures, where grain boundary movement and diffusion are 

considerable, the structures coarsen in time.  Examples are grain growth and Ostwald ripening 

(driven by interfacial energy) and the growth of intermetallic precipitates in a supersaturated 

matrix or an intermetallic layer between 2 substrates (driven by bulk energy).  As a result, the 

material properties change in time, which may or may not be desired.  

The phase-field approach has proven to be powerful for simulating the morphological 

changes for different processes, such as solidification, precipitation, martensitic transformations 

and coarsening [1-3].  Characteristic for phase-field models is that interfaces are assumed to be 

diffuse and have a finite width.  One advantage is that phase-field models can tackle the 

evolution of arbitrarily complex morphologies.  While early applications were mostly qualitative 

and for simplified materials, currently, much more attention is given to quantitative aspects.  To 

reduce the computational requirements, so called ‘thin interface’ phase-field models have been 

developed.  In these models the interfacial width is considered as a numerical parameter that can 

be modified for numerical reasons without affecting other system properties, such as interfacial 

energy, diffusion behavior or bulk thermodynamic properties.  In this way, it has become 

feasible to perform accurate 3D simulations for realistic dimensions.    

A ‘thin-interface’ formulation for grain growth in single-phase systems was recently 

introduced by some of the authors [4].  This model can treat arbitrary misorientation and 

inclination dependence and allows us a high controllability of the accuracy of the simulation 
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results.  In the present paper, this model for grain growth in single-phase materials is combined 

with a ‘thin-interface’ approach for multi-component alloys, which was originally developed by 

Tiaden et al. [5] and Kim et al. [6].  Furthermore, the implementation strategy and a number of 

applications are discussed.  The reader is referred to [4] and [5-8] for a theoretical derivation of 

the approach.   

 

Model Formulation 

 
Model Variables                

 

Assume a polycrystalline material with C components and different phases α,β, …ρ with 

different crystal orientations.  It is furthermore assumed that pressure, temperature and molar 

volume are constant.  The different grains are represented by a large set of non-conserved order 

parameter fields, which are a function of time t and spatial coordinates r, 
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.  

 

The first symbol in the subscript refers to the different phases (with a different crystal structure) 

and the second to different crystal orientations of the same phase.  Furthermore, C-1 independent 

conserved composition fields, representing the local mol fraction of one of the components, are 

used 
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Thermodynamic Description 

 

The total Gibbs energy F of a heterogeneous system is formulated as a functional of all 

field variables 
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where 
iρ

∗∑  indicates a sum over all order parameter fields. The energy functional consists of a 

bulk contribution Fbulk and an interfacial contribution Fint.  The functional f0 in the interfacial 

contribution is a fourth order polynomial of the order parameter fields   
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with degenerate minima, where 0 0f = , at  

 
1( ,..., ,... ,...) (1,...,0,...,0...),...,

(0,...,1,...,0,...),..., (0,...,0,...1,...),...

i iα α βη η η =
 (3) 

 

corresponding to the different phases and different crystal orientations.  The model parameters κ, 

γ and m are related to the interfacial free energy γint (a physical property of the system) and the 

diffuse interface width 
int
l  (chosen based on numerical considerations) as   

 int ( )g mγ γ κ=
 (4) 

and 

 int

0,int ( )mf

κ

γ
=l , (5) 

where g(γ) and f0,int(γ) are evaluated numerically as described in [4].  To distinguish between 

different interfacial energies for different phase boundaries, κ and γ can be formulated as a 

function of the order parameter fields [4].   

 

Following [5-8], the bulk free energy density fb in the phase-field free energy description 

(1) is related to the molar Gibbs energies Gm
ρ
(x1,…,xC-1,T*) of the different phases as a function 

of composition and for temperature T* as   
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with Vm the molar volume, φρ the local fraction of phase ρ, �µ k the inter-diffusion potential for 

component k and 1 1( ,..., )
C

x x x
ρ ρ ρ

−=
r

 virtual composition fields for the different phases.  Different 

from the models in [5-8], the sum of the local values of the order parameter fields may be 

different from 1 at interfaces.  Therefore, the local phase fractions φρ are calculated from the 

order parameter fields as  
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The virtual composition fields xk
ρ
 are calculated from the real composition fields xk, so that 
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although the inter-diffusion potentials �
k

µ  may vary from point to point in space.  It can be 

verified for relations (6)-(9) that within the bulk of a phase ρ, xk = xk
ρ
 and Gm(xk) = Gm

ρ
(xk

ρ
).  

Only at interfaces, the virtual composition fields differ from the real composition field.  Thanks 

to restriction (9), fb does not contribute to the interfacial energy.  As a consequence, interfacial 

energy and thickness can be chosen independently by changing the parameters κ, γ and m, and 

without affecting the bulk properties.    

    

Evolution Equations 
 

The evolution of the non-conserved order parameter fields is assumed to follow 
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where L is a parameter related to the interface kinetics.  For grain boundaries between grains of a 

same phase, L is related to the grain boundary mobility µint and grain boundary velocity vint as   
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with g(γ) a function of the model parameter γ [4].  For grain boundaries between grains of a 

different phase, the velocity depends on both the kinetics of the interfacial reactions 

(characterized by µint) and the diffusional transport of solutes.  For the processes described in this 

paper, it can however be assumed that the movement of interfaces between different phases is 

diffusion controlled.  L (or µint) is then taken large enough to obtain diffusion controlled interface 

movement, although not too large for numerical efficiency.  

 

If cross interactions are ignored, the evolution of the composition fields xk(r,t) is given by 

diffusion equations of the form [5-8] 
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equations (14) reduce to the phenomenological diffusion equation of Fick.   
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Parameter Determination and Numerical Implementation  

 
Parameter Determination 
 

For all interfaces, the parameters γ, κ, m and L are calculated iteratively for given 

interface energies γint, mobilities µint and a constant diffuse interface thickness 
gb

l .  The iterative 

procedure is described in [4] and implemented in Matlab.     

 

If parabolic functions of the form  
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with Ak
ρ
, Ck

ρ
 and xk,0

ρ
 model parameters, are used for the Gibbs energies of the different phases, 

equations (8) and (9) result in a linear system of equations with the virtual composition fields as 

unknowns, which can be solved efficiently.  The parameters in the parabolic Gibbs energy 

expressions (15) are obtained by fitting expressions (17) to Gibbs energy expressions from 

thermodynamic databases (obtained according to the CALPHAD method [9]) within the 

composition range of interest, namely around the equilibrium compositions of the coexisting 

phases.  For xk < 10
-12

 or xk > 1-10
-12

, the Ak
ρ
 are taken 10 times larger than in the parabolic 

description fitted for phase ρ, to prevent the molar fraction of a component from taking an 

unphysical value beyond 0 or 1.  With Gibbs energy expressions (15), constant parameter values 

for Mk
ρ
 result in constant diffusion coefficients Dk

ρ
 for the different bulk phases.   

 

Implementation Methodology 
 

With respect to implementation, the approach is to combine an easily extensible and 

high-level program with the possibility to optimize it for specific applications.  Therefore a C++ 

implementation has been implemented, which is a combination of an object-oriented and 

template metaprogramming [10-11] design.  Different simulation methods considering different 

aspects of the model or using different numerical approaches, form different classes (called 

simulation classes), all with a common interface.  There is one simulation class that considers 

the full model and is based on a central second-order finite difference discretization in space with 

first order explicit time stepping.  Furthermore, there are specialized simulation classes; for 

instance, one using a semi-implicit Fourier-spectral method [12], which is most efficient for 

grain growth in isotropic systems (with or without fixed particles), and a ‘bounding box’ 

implementation for 3D grain growth simulations with many grains (see below).  Other 

components, such as 2D and 3D data structures and a general interface for communication 

between different nodes, have been developed for use in the simulation classes.  The 2D and 3D 

data-structures (matrices and tensors) were developed based on the principles of template 

metaprogramming and expression templates [13].  In this way abstraction is made of the 

implementation details of basic matrix and tensor algorithms, while keeping the same 

performance as hand-tuned for-loops that take caching mechanisms of processor caches into 

account.  Similarly the communication between the nodes of a cluster is implemented in a class 
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hierarchy that allows modifying the parallelization mechanisms without having to rewrite the 

simulation classes. In practice, the MPI protocol is most often used. 

 

 

 
 

Figure 1: Illustration of the bounding box algorithm.  The evolution equation of each phase field variable is solved 

only for a small box around the grain represented by the phase field variable. 

 

 

The bounding box data structure has been designed specifically for polycrystalline 

structures [14].  It exploits the fact that at each point in the system only a limited number of order 

parameter fields differ from zero.  It allows the use of a large number of order parameter fields 

(for representing all grains) without excessive memory usage or computational requirements.   

An order parameter field is defined to be active at a particular grid point when its value is larger 

than a small threshold value ε. Hence, within a grain only 1 order parameter field and near grain 

boundaries, only a few, namely those corresponding to the neighboring grains, are active.  For 

each grain, a bounding box Bi is established as the smallest cuboid containing all grid points for 

which ηi > ε (see Figure 1).  Within each time step, the evolution equation for ηi is solved 

numerically only for the grid points in box Bi, using a second-order central finite difference 

discretization in space and a first order semi-implicit time stepping.  Then, the algorithm checks 

whether the grain regions have shrunk or grown, and updates the bounding boxes accordingly.  

The values of the order parameter fields are only stored for the grid points where they are active.  

The implementation is based on an object-oriented data structure as shown in the Unified 

Modelling Language (UML) diagram in Figure 2.  The approach can easily be extended to more 

complex phase field models and has definite advantages in post-processing. 
 

 

 
 

Figure 2: UML diagram of the object-oriented bounding box structure. The microstructure, grain regions and grain 

boundaries are treated as objects with a number of attributes, reflecting system properties, simulation parameters 

and bounding box delimiters. 
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Applications  

 
Zener Pinning                

 

The pinning effect of second-phase particles is a vastly employed mechanism to control 

the grain size of a material, which is for example used in the manufacturing of high-strength low-

alloyed steels, where a small grain size is required to obtain high strength, toughness and 

deformability. The particles exert a pinning force on moving grain boundaries and therefore 

reduce their mobility and, when a final grain size Rlim is reached, arrest grain growth.    

 
Figure 3: Snapshot of a 3D simulation of grain growth in a system with second-phase particles for a particle 

fraction fv = 0.08 and radius r = 4.3 g.p.  System size is 256x256x256 g.p. 

 

2D [15] and 3D [14,16] simulations of grain growth in the presence of second-phase 

particles have been performed for different volume fractions fV and radii r of the particles.  The 

particles were assumed to be constant in time.  The evolution of the average grain size, grain size 

distribution and the number of particles located on a grain boundary can be determined from the 

simulations, as well as the final grain size Rlim were grain growth stagnates.  The simulation 

image in Figure 3 was obtained using the bounding box algorithm.  Thanks to an efficient 

memory use, it is possible to perform simulations for systems with 256x256x256 grid points 

(g.p) and an arbitrary number of grains on a single node. Figure 4 shows, for different volume 

fractions, how the average grain size changes in time and finally stagnates. 
 

Grain growth in systems with a fiber texture                

 

Thin films and wires have often a grain structure in which all crystals have nearly 

identical orientation in one direction, but are randomly oriented in the plane perpendicular to it.  

This structure is usually induced by geometrical symmetries in the deposition technique or 

deformation process.  Due to the axi-symmetry, the orientation of the grains and misorientation 

between different grains can be expressed with a single angle.   

Simulation results are shown for a system with misorientation dependence of the grain 

boundary energy as plotted in the upper graph in Figure 5.  It assumes a four-fold symmetry. The 

orientations within one quadrant are  
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Figure 4:Temporal evolution of the mean grain size, as obtained from phase field simulations of grain growth in the 

presence of second-phase particles.  When a limiting grain size Rlim is reached, grain growth stops.  

 

discretized with an interspacing of 1.5° and assigned to 60 order parameters. The misorientation  

between grains with orientations i and j is calculated as θ = 1.5°| j-i | for | j-i | ≤ 30 and θ = - 90° 

+ 1.5°| j-i | for  | j-i | ≥ 30. The grain boundary mobility is taken constant, µgb=1·10
-6

 m
2
s/kg, and 

the grain boundary width is taken 
gb

l =1.33·10
-6

 m. Calculation of the model parameters using 

the iterative algorithm from [4] with γinit = 1.5 and σgb,init = 0.25  J/m
2
, gives m = 2.25·10

6
 J/m

3
, L 

= 1 ms/kg and values for κ an γ as a function of misorientation as shown in Figure 5.  The 

simulations can be performed with the general simulation class or with the bounding box 

algorithm.  A grid spacing ∆x=0.2·10
-6

 m and time step ∆t = 0.008 s were used.  Figure 6 shows 

the grain structure at t=144 s.  In Figure 7, it is shown how the grain boundary character 

distribution changes in time.  The simulations start from a random grain boundary character 

distribution.  The fraction of low-angle boundaries increases in time.  The fraction of boundaries 

with a misorientation close to 37.5° increases in the beginning, but then starts decreasing again.  

It may be expected that finally a steady-state growth regime with constant grain boundary 

character distribution is reached.    

 

Diffusion and Coarsening in Cu/Sn-0.02at%Cu Solder Joints                

 

During soldering, typically an intermetallic compound (IMC) is formed between the 

molten solder and the solid substrate.  Due to diffusion the IMC and intermetallic precipitates in 

the solder alloy continue to grow during device use.  Because of their inherent brittle nature, the 

morphology and thickness/size of the IMC layer and precipitates strongly affect the mechanical 

properties of the solder joint.   

Simulations were performed for a Cu-substrate / Sn-0.02at%Cu-solder joint.  For all 

phases, the interfacial energy is taken γint= 0.35 J/m
2
, the interface mobility µ =3·10

2
 m

2
s/kg and 

interfacial width 
gb

l =5·10
-7

 m.  A (Cu)–phase, a (Sn)-phase and an intermetallic Cu6Sn5-phase 
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are considered, the Cu3Sn-phase is not.  Based on phase diagram information and Gibbs energy 

expressions (SSOL4 database [17]) for T*=150°C, the following parameters in the parabolic free 

energies were chosen: A
(Cu)

=10
8
, C

(Cu)
=0, x0,Sn

(Cu)
=0.076, A

(Sn)
=10

9
, C

(Sn)
=10

7
, x0,Sn

(Sn)
=0.979, 

A
Cu6Sn5

=10
10

, C
Cu6Sn5

= -10
6
, x0,Sn

Cu6Sn5
=0.455.  The parabola are plotted in Figure 8.  The inter-

diffusion coefficients are taken as DSn
Cu6Sn5

=0.5·10
-16

 m
2
/s and DSn

(Cu)
 = DSn

(Cu)
=0.5·10

-12 
m

2
/s.     

 

 
Figure 5: Upper: Grain boundary energy as a function of misorientation used in the simulations for structures with 

fiber symmetry.  For low-angle misorientations a Read-Shockley dependence with θm=15° and σm = 0.25 J/m
2
 is 

assumed.  Furthermore, there is a low-energy cusp at 37.5°.  

 Lower: Model parameters κ and γ as a function of misorientation. 

 

 

a) b)  
 

Figure 6: a) Snapshot of a 3D grain growth simulation.  Grains with similar orientation have a similar 

color.   Boundaries with misorientation 1.5°, 3° and 37.5°  are respectively indicated in white, gray and red.  System 

size is 200x200x200 g.p. which represents 64000 µm
3
.  b) 3D view of clusters of grains with a similar orientation.  

The blue grains correspond to the blue grains in a). 
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Figure 7: Temporal evolution of the grain boundary character distribution. 

 

    

 

 
 

Figure 8: Parabolic free energies for the (Cu), (Sn) and Cu6Sn5-phase used in the simulations of the lead-free solder 

joint. The equilibrium compositions of the coexisting phases, determined by the common tangent construction, are 

also indicated.         

 

 

The simulation images in Figure 9 show how the intermetallic Cu6Sn5-layer grows, 

consuming the (Cu) and (Sn) phases, by diffusion through the intermetallic layer.  At the same 

time the intermetallic Cu6Sn5-precipitates undergo Ostwald ripening by Cu diffusion through the 

Sn-matrix.  The volume fraction of the precipitates is initially 0.04 (according to the lever rule), 

but decreases in time as part of the Cu-atoms dissolved in the Sn-matrix re-precipitate on the 

intermetallic layer (and not on a precipitate).  
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Figure 9: Simulation images of the coarsening of a solder joint formed between a (Cu) substrate and Sn-0.02at%Cu 

solder.            
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