

Phase-field modeling of microstructure evolution in multi-component alloys

Nele Moelans

Department of Metallurgy and Materials Engineering (MTM) K.U.Leuven, Belgium

Liesbeth Vanherpe, Jeroen Heulens, Bert Rodiers

- Introduction: modeling of microstructure evolution
- Principles of phase field modeling
- Application examples
 - Anisotropic grain growth
 - Precipitates on grain boundaries
 - Lead-free solder joints
 - Solidification
- Summary

Role of microstructures in materials science

Low-C steel: wt% C < 0.022 Ferrite + small carbides

Steel: wt% C = 0.4, slow cooling rate

Ferrite + *cementite*

Steel: wt% C = 0.4, fast cooling rate

Ferrite needles+ perlite

Microstructure evolution in multicomponent alloys

- Connected grain structures
- Complex morphologies
- Concurrent processes
 - Solidification grain growth -Ostwald ripening – diffusion phase growth
- Materials' properties are largely related to microstructure
 - Material development
 - Reliability

Low C-steel, ferritic grain structure

Microstructure evolution in multicomponent alloys

- High complexity
 - Anisotropy, segregation, solute drag, second-phase precipitates, pipe diffusion, mutual distribution of phases, ...
 - Many material properties: Crystal structure, Gibbs energy, diffusion coefficient of different phases? Structure, energy, mobility of grain boundaries?
 - Evolution connected grain structure ?
 - \rightarrow Mesoscale simulations
- Importance
 - Material development: heat treatment, alloying
 - Reliability

LEUVERSITEIT

Phase-field modelling

Strength

- Complex shapes
- Multi-grain, multi-phase structures
- Thermodynamic driving forces

$$F = F_{chem} + F_{int} + F_{elast} + F_{magn} + \dots$$

- Multi-component
- Transport equations
 - Mass and heat diffusion/convection

Difficulties

- Implementation for realistic length scales
- Parameter choice

Principles of phase field modeling

- Diffuse interface concept
- Phase field variables
- Thermodynamic free energy functional
- Evolution equations
- Parameter assessment
- Numerical implementation

Diffuse-interface description

• Sharp interface

- Discontinuous variation in properties
- Requires tracking of the interfaces
- Simplified grain morphologies

- Continuous variation in properties
- Interfaces implicitly given by local variations in phase-field variables
- Complex grain morphologies

Distance

• Diffuse interface approach (van der Waals, Cahn-Hilliard (1958), Ginzburg-Landau (1950))

•Microstructure evolution started ± 20 years ago

 \mathbf{O}

Representation of microstructures

- Phase-field variables: continuous functions in space and time
 - Local composition $x_B(\vec{r},t), c_B(\vec{r},t)$
 - Local structure and orientation $\vec{\eta(\vec{r},t)}_{\phi(r,t)}$

Antiphase boundary

Binary alloy A-B •Phase α: η = 0 •Phase β: η = 1

Thermodynamics and kinetics

Free energy functional 0

$$F = F_{bulk} + F_{surface} = \iint_{V} f_0(x_i, \eta_k, T) + \frac{\kappa}{2} \sum_{k=1}^{p} (\nabla \eta_k)^2 + \frac{\varepsilon}{2} \sum_{i=1}^{C} (\nabla x_i)^2 dV$$

Homogeneous free energy (chemical, elastic, ...) $(\rightarrow diffuse interfaces)$

Gradient free energy

Evolution of field variables \mathbf{O}

Non-conserved field variables (\rightarrow Interface movement) •

$$\frac{\partial \eta_k(\vec{r},t)}{\partial t} = -L \frac{\partial F(x_1,...,x_C,\eta_1,...,\eta_p)}{\partial \eta_k(\vec{r},t)} \qquad (+\xi(\vec{r},t))$$

Conserved composition fields (\rightarrow Mass diffusion) •

$$\frac{1}{V_m} \frac{\partial x_i(\vec{r},t)}{\partial t} = \vec{\nabla} M \cdot \vec{\nabla} \frac{\partial F(x_1,...,x_C,\eta_1,...,\eta_p)}{\partial x_i(\vec{r},t)} \qquad (+\xi(\vec{r},t))$$

Homogeneous free energy functional

Anti-phase boundary

Boundary width:

dth: $\propto \sqrt{(\Delta f_0)_{\text{max}}}$

Boundary velocity: $\propto \kappa L$

$$f_0 = 4(\Delta f_0)_{\max} \left(\frac{\eta^4}{4} - \frac{\eta^2}{2}\right)$$

Homogeneous free energy

Homogeneous free energy

Binary two-phase system

Homogeneous free energy

Binary two-phase system

Effect of elastic stresses and strain

- Coupling with micro-elasticity theory $\rightarrow F = F_{chem} + F_{int} + F_{elast}$
 - Effect of transformation and thermal strains, applied stress/strain
 - Martensitic transformation, precipitate growth

Polycrystalline structures

- Polycrystalline microstructure $\eta_1, \eta_2, ..., \eta_i(\vec{r}, t), ..., \eta_p$
- Grain i of matrix-phase

 $(\eta_1, \eta_2, ..., \eta_i, ..., \eta_p) = (0, 0, ..., 1, ..., 0)$

• Free energy functional

$$F = F_{surface} = \int_{V} f_0(\eta_1, \eta_2, ..., \eta_p) + \frac{\kappa}{2} \sum_{k=1}^{p} (\nabla \eta_k)^2 dV$$

Multi-phase and multi-component alloys

- Phase field variables:
 - Grains $\eta_{\alpha 1}, \eta_{\alpha 2}, ..., \eta_{\alpha i}(\vec{r}, t), ...,$ $\eta_{\beta 1}, \eta_{\beta 2}, ..., \eta_{p}$
 - Composition $\vec{x_A}, \vec{x_B(r, t)}, ..., \vec{x_{C-1}}$
- Free energy functional

$$f_{bulk}(x_k, \eta_{\rho i}) = \sum_{\rho} h_{\rho}(\eta_{\rho i}) f^{\rho}(x_k^{\rho})$$
$$= \sum_{\rho} h_{\rho}(\eta_{\rho i}) \frac{G_m^{\rho}(x_k^{\rho})}{V_m}$$

2 phase polycrystalline structure

Parameter assessment

• Different kinds of input data (calculated and/or measured)

- Phase stabilities, phase diagram information
 - CALPHAD \leftarrow (ab-initio, experiments)
- Interfacial energy and mobility
 - ab-initio, (MD, MC \leftarrow ab-initio), experimental
- Elastic properties, crystal structure, lattice parameters
 - ab-initio, experimental
- Atomic diffusion mobilities
 - CALPHAD \leftarrow ((MC \leftarrow ab-initio), experimental)
- Orientation and composition dependence
 - Anisotropy, segregation, solute drag

Quantitative aspects

Numerical solution of partial differential equations

Bounding box algortihm
Sparse data structure
Object oriented C++
(L. Vanherpe et al., K.U.Leuven)

• Discretization (Finite differences, finite elements, Fourier-spectral method

MICRESS, commercial software forphasefield coupled with CALPHAD

• Adaptive meshing (M. Dorr et al. AMPE, LLNL)

Examples of applications

- Anisotropic grain growth
- Precipitates on grain boundaries
- Lead-free solder systems
- Solidification

Columnar films with fiber texture

- Grain boundary energy:
 - Fourfold symmetry
 - Extra cusp at θ = 37.5°
 - Read-shockley

Discrete orientations

 $\overline{(\eta_1, \eta_2, ..., \eta_i(r, t), ..., \eta_{60})} \Rightarrow \Delta \theta = 1.5^{\circ}$

- Constant mobility
- Initially random grain orientation and grain boundary type distributions

2D simulation

White: $\theta = 1.5$ Gray: $\theta = 3$ Red: $\theta = 37,5$ Black: $\theta > 3, \theta \neq 37.5$

In collaboration with F. Spaepen, School of Engineering and Applied Sciences, Harvard University

3D simulations for wires with fiber texture

Microstructure analysis: films

 Misorientation distribution function (MDF)

• Evolution mean grain area

► Evolution towards stead-state regime
→ Simple mean field models

Examples of applications

- Anisotropic grain growth
- Precipitates on grain boundaries
- Lead-free solder systems
- Solidification

Zener pinning

- Mechanism for controlling grain size
 - E.g. NbC, AIN, TiN,... in HSLAsteels
 - Nano-grain structures
- Zener relation for limiting grain

 $\frac{\overline{R}_{\lim}}{\overline{r}} = K \frac{1}{f_V^b}$

• Influence of

size

- Shape of the particle
- Interfacial properties of particles
- Initial distribution
- Evolution particles

Fe-0.09 to 0.53 w% C-0.02 w% P with Ce2O3 inclusions (PhD. M. Guo)

Simulation results: AI thin films

• Thin films with CuAl₂ - precipitates

(exp from H.P. Longworth and C.V. Thompson)

Film preparation

Simulation results: effect of particle shape and coarsening

Jerky motion during recrystallization in Al-Mn alloy

- In-situ EBSD observation of recrystallization in AA3103 at 400 °C
 - CamScan X500 Crystal Probe FEGSEM
- Jerky grain boundary motion
 - Stopping time: 15-25 s
 - Pinning by second-phase precipitates
 - $Al_6(Fe,Mn)$, α - $Al_{12}(Fe,Mn)_3Si$
- Added to phase field model
 - Grain boundary diffusion
 - Driving force for recrystallization

20µm

In collaboration with A. Miroux, E. Anselmino, S. van der Zwaag, T. U. Delft

Material properties at 723K

Grain boundary energy high angle	$\gamma_h = 0.324 \text{ J/m}^2$
Interfacial energy Al ₆ Mn precipitates	$\gamma_{\rm pr}=0.3~J/m^2$
Mobility high angle grain boundary	$M_{h} = 2.94 \cdot 10^{-11} \text{ m}^2 \text{s/kg}$
At solute content 0.3w% Mn	(Miroux et al., Mater. Sci. Forum, 467-470, 393 (2004))
Equilibrium composition of matrix	c _{Mn,eq} = 0.0524 w% (0.02456 at%)
	(PhD thesis Lok 2005)
Actual composition of matrix	c _{Mn} = 0.3 w% (0.1474 at%)
(supersaturated)	(PhD thesis Lok 2005)
Mn diffusion in fcc Al	$D_{0,bulk} = 10^{-2} \text{ m}^2/\text{s}, \text{ Q}_{bulk} = 211 \text{ kJ/mol}$
	$\rightarrow D_{\text{bulk}} = 5.5973 \cdot 10^{-18} \text{ m}^2/\text{s}$
Pipe diffusion high angle boundaries,	$D_{0,p} = D_{0,bulk}, \ Q_p = 0.65 Q_{bulk}$
precipitate/matrix interface	$\rightarrow D_{p} = 1.2195 \cdot 10^{-12} m^{2}/s$
Bulk energy density: $f^{\rho} = A^{\rho}(x-x^{\rho}_{0})^{2}$	$A^m = 6 \cdot 10^{11}; x^m_0 = 0.000258$
	$A^{p} = 6 \cdot 10^{12}; x^{p}_{0} = 0.1429$

Precipitate coarsening and unpinning

- $P_D < P_{ZS} (P_D \approx P_{ZS})$
 - Pinning: P_{zs}=3.6 MPa
 - Rex: P_D=3.1 MPa

 Unpinning mainly through surface diffusion around precipitates

• **P**_D <<< **P**_{ZS}

/ =

KATHOLIEKE UNIVERSITEIT

ΞU

- Pinning: P_{zs} = 3.6 MPa
- Rex: P_D = 1.1 MPa

 Unpinning through grain boundary diffusion

Examples of applications

- Anisotropic grain growth
- Precipitates on grain boundaries
- Lead-free solder systems
- Solidification

LEUVEN Coarsening in Sn(-Ag)-Cu solder joints

- COST MP-0602 (Advanced Solder Materials for High Temperature Application)
 - IMC formation and growth precipitate growth Kirkendal voids stresses – grain boundary diffusion
 - CALPHAD description
 - Diffusion coefficients, growth coefficient for IMC-layers

Cu-Sn system

•Equilibrium compositions

COST MP0602 Industrial Seminar on Thermodynamics, Bratislava, April 6, 2010

Interdiffusion coeffcients

Effect of precipitates in Sn-2at%Cu

 Interdiffusion coefficients:

 $D_{Sn}^{(Cu)} = 10^{-25}, 10^{-12} \text{ m}^2/\text{s}$ $D_{Sn}^{Cu6Sn5} = 10^{-16}, 10^{-13}, 10^{-12} \text{ m}^2/\text{s}$ $D_{Sn}^{(Sn)} = 10^{-12} \text{ m}^2/\text{s}$

Interfacial energies:

0.35J/m²

 Initial volume fraction precipitates:

 $f_V = 0.04$

 Interfacial reactions are diffusion controlled

Effect of grain boundary diffusion

 $D_{Sn}^{(Cu)} = 2 \cdot 10^{-25}, *2 \cdot 10^{-25} \text{ m}^2/\text{s}$ $D_{Sn}^{Cu3Sn} = 2 \cdot 10^{-15}, *2 \cdot 10^{-13} \text{ m}^2/\text{s}$ $D_{Sn}^{Cu6Sn5} = 2 \cdot 10^{-15}, *2 \cdot 10^{-13} \text{ m}^2/\text{s}$ $D_{Sn}^{(Sn)} = 2 \cdot 10^{-12}, *2 \cdot 10^{-12} \text{ m}^2/\text{s}$

Growth behavior Cu₃Sn ?

Examples of applications

- Anisotropic grain growth
- Zener pinning
- Coarsening of precipitates on grain boundaries
- Lead-free solder systems
- Solidification

Solidification

Dendritic growth

4-fold weak anisotropy in interface energy, Cu-Ni

Eutectic growth

Faceted growth (strong anisotropy)

4-fold anisotropy in interface energy

4-fold anisotropy in interface mobility

J. Heulens, K.U. Leuven

- Understanding microstructure evolution is important for material science, but processes can be very complex
 - Phase-field technique + other models and experimental input
- Principles phase-field modeling
 - Diffuse interface concept, conserved and non-conserved field variables
 - Evolution equations derived from a free energy functional
 - Quantitative aspects: Parameter choice + advanced implementation techniques
- Applications
 - Grain growth, recrystallization, coarsening, solidification, growth intermetallic phases, ...

Thank you for your attention ! Questions ?

Acknowledgements

- Research Foundation Flanders (FWO-Vlaanderen)
- Flemish Supercomputing Center (VSC)
- More information on *http//nele.studentenweb.org*

