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Abstract

A phase-field model is presented to study binary systems
having two phases with different elastic properties. The
evolution of two phase-field variables, namely, composition
and non-conserved phase-field, are considered. This model
uses the approach of Steinbach and Apel [1] to model the
dependence of total strain on the phase-field, which assumes
equal elastic stresses in the different phases at the diffuse inter-
face. The elasticity equations for mechanical equilibrium are
solved by a Fourier transform-based iterative approach similar
to Hu and Chen [2]. The phase-field equations are solved
by the finite difference method. Growth of a second-phase
particle in an elastic matrix and the dependence of the precipi-
tate shape on the elastic properties of the two phases are studied.
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1 Introduction

Phase-field modelling as a tool to study microstructure evo-
lution is becoming increasingly important with its capabil-
ity to combine various phenomena like elasticity, magnetism,
etc. with the conventional model. In the field of phase-field
microelasticity, Khachaturyan’s model [3] is widely used and
there have also been attempts to combine it with plasticity mod-
els to study various phenomena like dislocation dynamics, crack
propagation and so on. The focus of the present study is to ex-
amine the effect of using two different interpolations for elas-
tic properties when elasticity effects are treated in a phase-
field model. Recently, Steinbach and Apel [1] have proposed a
multiphase-field model which includes elasticity and is consis-
tent with the Kim et al. [4] model for the chemical contribution.
It uses Reuss-Sachs model [5] for interpolating the stiffness ten-
sor between the different phases, instead of the Khachaturyan’s
model. Hu and Chen [2] established a Fourier transform-based
iterative approach for solving the elasticity equations at me-
chanical equilibrium to obtain the elastic strain for Khachatu-
ryan’s model. In the present study, the model formulation of
Steinbach and Apel [1] is used to treat a binary two-phase sys-
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tem and the elasticity equation is solved by an iterative approach
similar to that of Hu and Chen. This method is compared with
the Khachaturyan’s scheme of interpolation [5].

In Section 2, a description of the proposed model is pre-
sented, comparing it with Khachaturyan’s model and a brief de-
scription of Hu-Chen’s method to solve the elasticity equations
is given. In Section 3, phase-field equations are introduced. Fi-
nally, in Sections 4 and 5, results are presented for a precipitate
growing in an elastic matrix for two different interpolations of
the stiffness tensor and for different elastic properties.

2 Model formulation

Two components A and B forming two possible phases, o and
(£ with different elastic properties are considered in this study.
Two phase-field variables, which are functions of space and
time are used: the conserved molar fraction field, ¢ (molar frac-
tion of A), and the non-conserved phase-field, ¢. A value of ¢
= 1 indicates the presence of only « phase and ¢ = 0, only 3
phase. Any intermediate value refers to the interface region be-
tween the two phases, which is considered as a mixture of the
two phases.
The total free energy F of the system is defined as:

F = /fgb+fch+feldv (1)

where f9° refers to grain boundary energy density, < is the
chemical free energy density and f¢, elastic energy density.

2.1 Grain boundary energy density

The grain boundary energy density is given by:

1= 5(Ve) + Wy(s) @
9(¢) = ¢*(1-9¢) 3)

where & is the gradient energy coefficient, g(¢) is the double-
well function and W, depth of the double-well. The two terms
contribute only in the interface region. x and W are adjustable
parameters, related to the interfacial energy and the interfacial
thickness [6].

2.2 Chemical free energy density

The chemical free energy density is interpolated between the
two phases using a smooth function p(¢) and is given by:
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where p(¢) = ¢°(6¢> — 15¢ + 10) 6))

p(¢) equals 0 at =0 and equals 1 at ¢=1. The chemical energy
densities of the v and (3 phases are assumed to have a parabolic
shape: f5" = A%/2(ca—Ca0)? f§" = A% /2(cs —cp0)?, where
A, AB, Ca,0 and cg o are constants. According to Kim et al.[4],
every point in the interface is assumed to be a mixture of the two
phases with compositions ¢, and cg (which are not necessarily
equal to the compositions of the bulk « and 3 phases) at equal
chemical potential. This is a thermodynamically consistent de-
scription of the interface region.

Therefore, uo = pg (6)
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ie, g = des )
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The composition c is related to the phase concentrations ¢, and
cg as:

= A%(ca — Cayp) =

¢ = p(@)ca+[1—p(¢)les ©
This correctly reduces to the phase concentrations inside the
bulk of the two phases. c, and cg are calculated using (8) and
(9). The derivatives of the chemical free energy density with
respect to ¢ and ¢ are derived using equations (4)-(9).

2.3 Elastic energy density

The elastic stress is defined according to Hooke’s law as: 0;; =

Cijklezll, where Cjjy is the stiffness tensor and eill, the elastic
strain. The elastic strain is defined as the difference between
the total strain, efﬁt, and the eigenstrain (stress-free strain), e;;,
which arises in the material due to phase transformation:

= e —em (10)

The total strain is the sum of homogeneous strain, which is a
measure of the macroscopic deformation of the system, and lo-

cal heterogeneous strain [7].
tot

€l = €rl+ e (11)

The heterogeneous strain is related to the displacement as:
1 [0un(7) | Ow(7)
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where u;(7”) is the ith component of displacement. Two differ-
ent formulations for calculating the elastic energy density are
presented. In the proposed model, Steinbach and Apel’s [1] ap-
proach is used. This is later compared with Khachaturyan’s ap-
proach [5].

2.3.1 Steinbach and Apel’s approach

According to Steinbach and Apel, the elastic energy density is
interpolated between the phases, similar to the chemical energy
density:

= @ fE [ - P (13)
The elastic energy densities of the two phases are given by:
€ 1 el,x @ e,
f&= e Ol ey (14)
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o 3 . .
where C ke and Cij «; are constants. Similar to phase composi-

tions, phase strains ;- and ¢ are introduced.

Using the Reuss-Sachs model, the elastic stress is equal in
all the phases assumed to be present as a mixture at every point
in the interface. This is analogous to the assumption of equal
chemical potentials.

ie, o0y =05 = afj (16)
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The overall elastic strain is interpolated between the phase
strains as:

= p@)e ™+ 1 —p(¢)e,” (19)

Substituting from (16) and (18), we get
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This is rewritten as
Cijii = C?jkl - Cz{jkl(?) (22)

The solution to the elasticity equations to obtain the elastic
strain field is elaborated in Section 2.4. From equation (18),
we obtain

e’ = (O Climnenm 23)
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i = PO + [1 — p(d)] Mitmnens (25)
[Using (19) and (24)]

b s obtained by solving equation (25) and from that, ¢;”

can also be obtained using equation (24). The elastic energy
density and its derivative with respect to ¢ are calculated using
equations (13)-(15).

2.3.2 Khachaturyan’s approach

The elastic energy density is given by:
€ 1 e e
f b= 56”1 : Cijr iéklz (26)
In the Khachaturyan’s approach [5], a linear mixture model is
used for the stiffness tensor:

Cila = p(@)CHm+[1 = p(d)ICL, @7
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where Ciaj ; and ij «; are constants. For the eigenstrain also, a
linear mixture model is used:
p(P)er” + [1
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The elastic energy density and its derivative with respect to ¢
are calculated using the above equations and the elastic strain
defined earlier. The solution to the elasticity equations to obtain
the elastic strain field is elaborated in Section 2.4.



2.4 Solution of mechanical equilibrium equa-
tions for both models

For solving the elasticity equations for the two approaches de-
scribed in Sections 2.3.1 and 2.3.2 in order to obtain the elastic
strain field at every time step, the approach of Hu and Chen [2]
is implemented.
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[From Section 2.3]

Since the mechanical equilibrium is attained much faster than
the chemical equilibrium because of the slow diffusion pro-
cesses, it is assumed that the system is always at mechanical

equilibrium, i.e., 99ij = (. The mechanical equilibrium equa-
tion cannot be solved analytically because of the non-linearity.
If the inhomogeneity in elasticity that arises from the term with

P . PR .
Cijkl is ignored, i.e. C’ijkl = 0, then the equation becomes
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This can be solved in the Fourier space. The zeroth-order ap-
proximation of the displacement field in the real space in 2-D
can be obtained by taking the back Fourier transform of the dis-
placement field in the Fourier space. Including the terms with
C! jr, and retaining the same left hand side as equation (32), the
mechanical equilibrium equation becomes
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The n'? order solution for displacement field can be obtained
by substituting the (n — 1)th order solution on the right hand
side and following a similar procedure of using Fourier trans-
forms. In this study, the system is constrained such that there
is no macroscopic deformation. Therefore, the homogeneous
strain, €5 = 0. The iterative approach described above is fol-
lowed till the displacement field converges. Since the system in
consideration is 2-D, we obtain displacement fields in two di-
rections. The heterogeneous strain is calculated from the two
final displacement fields using equation (12) and elastic strain
field is calculated using equation (10).

3 Phase-field equations

The temporal evolution of the non-conserved phase-field vari-
able, ¢(7t) is given by Ginzburg-Landau equation:

9 oF
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b
where 85; = —H?%ﬁ +Wg'(¢) (36)

The temporal evolution of the conserved molar fraction field,
(70 is given by Cahn-Hilliard equation [8]:

% - V. <M?%) 37)
v. <M? 6fzh) (38)

0

4 Details of the simulation

Firstly, the proposed model is compared with Khachaturyan’s
model. The strain fields for both approaches are solved by the it-
erative approach explained in Section 2.4. The phase-field equa-
tions given in Section 3 are solved by finite difference method.
Periodic boundary conditions are assumed for the phase field,
composition field and displacement fields.

A matrix of 128 ymx128 um is considered with a circular
precipitate of radius 20 pum located at the centre. The Cu-Sn
system is considered with « as the Sn (bct) phase and (5 as the
CugSnj phase. Parabolic free energies with the following con-
stants are used: A% =10° J/m?, 4% = 1010 J/m?, ¢, 0 = 0.979
and cg o = 0.455 [9]. These values correspond to an approxima-
tion of the Gibbs free energies of the two phases calculated at
180°C. The stiftness tensors of the two phases are: C7 = 82.74
GPa, ({5 = 57.85 GPa and Cf) = 28.18 GPa, C’fl = 168.57
GPa, C, = 69.11 GPa, Cj, = 165.39 GPa and C}, = 45.981
GPa [10, 11]. The eigenstrain is taken as 1% in the precipitate
phase and zero in the matrix phase. The simulations are started
from the equilibrium composition values. Time step of 0.001
sec is used.

The proposed model derived from Steinbach and Apel’s ap-
proach is used for further simulations. According to Hu and
Chen[2], the shape of a second-phase particle in a matrix de-
pends on the ratio of shear moduli of the two phases. Hence, in
this set of simulations, the values of the elastic modulus of the 3
phase are changed such that the bulk modulus B (= C11 + C12)
and the ratio of anisotropy d (= 2C44/(C11 — C12)) are the same
as that of the o phase. Simulations are performed for three dif-
ferent values of the ratio of the shear modulus (C’f4 J/CL). A
matrix of 128x 128 cells is considered with a square 20x20
precipitate located at the centre. Parabolic free energies with
the following constants are used: A% = 0.173*10° J/m3, A% =
0.86%10% J/m?, c,.,0 = 0.053 and cg o = 0.947. The eigenstrains
are taken as 1% and 2% in the two phases respectively. Initial
composition of 0.053 in the o phase and 0.947 in the 3 phase
are used. Other parameters are assumed to be dimensionless.

5 Results and Discussion

The results from the proposed model and Khachaturyan’s ap-
proach are compared for the growth of a CugSnjs precipitate in



Sn matrix after 20000 time steps. The composition fields for
the two approaches are shown in Figures 1(a) and 1(b). The
evolution of the precipitate in Khachaturyan’s approach is much
faster than in the proposed model. This indicates that the elas-
tic energy density contribution to the evolution of the system
is higher in Khachaturyan’s approach when realistic parameters
are used. The proposed model is still able to predict the evolu-
tion with a stable shape of the precipitate. Due to higher eigen-
strain in the precipitate phase, the precipitate tends to shrink in
both cases.
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(a) Proposed model (b) Khachaturyan’s approach

Figure 1: Comparison of the composition fields obtained using
the two approaches

Figures 2(a) and 2(b) compare the stress profile of ¢1; com-
ponent for the two approaches. The magnitude of stress inside
the precipitate is higher in Khachaturyan’s approach. The mag-
nitude of the stress is highest inside the precipitate for both ap-
proaches, due to the presence of eigenstrain in the precipitate
phase only.
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(a) Proposed model (b) Khachaturyan’s approach

Figure 2: Comparison of the stress fields of o1; component ob-
tained using the two approaches

In the next set of simulations, the influence of the ratio of
shear modulus on the precipitate shape is studied for 3 values of
054/024: 1.63, 0.81 and 0.54. Figures 3(a), 3(b) and 3(c) show
the shape of the precipitate for the 3 cases after 50000 time steps
by plotting the phase-field. For C’i /C$, = 1.63, the corners
become pointed. For C%,/C%, = 0.81 and for C%,/C$, = 0.54,
the corners become flat. Simulations performed for longer times
will reveal more marked changes in the precipitate shape. The
efféct of ratio of the shear moduli is clearly seen.

6 Conclusions

A phase-field model for studying a binary system with elas-
tic inhomogeneity was derived and implemented and simula-
tion results for CugSns particle in Sn matrix were compared
with results obtained using Khachaturyan’s model. The elastic
contribution seemed to dominate the results in Khachaturyan’s
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Figure 3: Particle shapes for different ratios of shear moduli

model, resulting in fast shrinkage of the precipitate, whereas
the proposed model was able to demonstrate a stable evolution
of the precipitate for realistic parameters. The proposed model
also showed the effect of changing the ratio of shear modulus
between the precipitate and the matrix phase on the precipitate
shape.
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