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Abstract

We present a multicomponent multi-phase field model for isothermal crystallization of oxide melts. The bulk thermodynamic prop-
erties of the liquid as a function of composition are retrieved from the FACT thermodynamic database for oxide systems. For solid
phases modeled as stoichiometric in the thermodynamic database, a paraboloid Gibbs energy is introduced with specific constraints
to ensure correct phase equilibria and minimal solubility in the stoichiometric phase. The interfacial mobility can show strong anisotropy
and the interfacial energy can have weak anisotropy, since both faceted and dendritic growth morphologies are important for crystal-
lization in oxide systems. The possibilities of the model are illustrated with three case studies considering crystallizing and dissolving solid
phases in a CaO–Al2O3–SiO2 melt. These case studies show the influence of the diffusion mobilities on the diffusion path, the tie-line
selection in a ternary system and the effect of the surface energy on dendritic growth.
� 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

The crystallization of oxide melts is an important phe-
nomenon in many application domains, such as geology
[1], pyrometallurgy [2–4], glass ceramics [5] and advanced
ceramic materials [6]. The production of glass ceramics,
for example, occurs by controlled crystallization of a heav-
ily undercooled liquid to obtain a glassy material with
superior mechanical properties [5]. Moreover, production
of dense parts of refractory ceramics is often done by
liquid-phase sintering, in which the crystallization or disso-
lution of the powder particles in the interconnected liquid
plays an important role [6].

Crystallizing phases often exhibit complex morphologies
on the mesoscale, dendrites being a well-known example
[7]. The phase field concept has proved to be a very power-
ful tool [8] for modeling crystallizing microstructures,
1359-6454/$36.00 � 2010 Acta Materialia Inc. Published by Elsevier Ltd. All

doi:10.1016/j.actamat.2010.12.016

⇑ Corresponding author.
E-mail addresses: jeroen.heulens@mtm.kuleuven.be (J. Heulens),

bart.blanpain@mtm.kuleuven.be (B. Blanpain), nele.moelans@mtm.ku
leuven.be (N. Moelans).
because it can treat arbitrarily complex interface shapes
with minimal mathematical complexity. Kobayashi was
the first to successfully simulate a growing dendrite in a
pure undercooled metallic liquid using a phase field model
[9]. Later, Warren and Boettinger simulated an isothermal
constitutional dendrite in a binary alloy [10]. The extension
from two phase systems (single dendrite) to multi-phase
systems was done by Steinbach et al. [11], introducing the
multi-phase approach. Tiaden et al. have developed a
framework for coupling diffusion equations to phase field
equations [12] in multi-component systems.

The phase field method is mostly applied for metallic
systems and the current methodologies do not completely
extend to oxide systems. For oxide systems, the composi-
tion dependence of thermodynamic functions and diffusion
data are typically expressed as a function of oxide compo-
nents (e.g. CaO, SiO2, . . .), whereas for metals, the compo-
sition dependence is generally expressed as a function
of the elements (e.g. Cu, Fe, . . .). The thermodynamic
databases for oxides are also based on different models
than those for metals. Oxide melts are often modeled using
a Modified Quasi-Chemical Model [13] and solid oxide
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phases are frequently considered as stoichiometric, which is
not compatible with the diffusion equations and diffuse
interface approach within a standard phase field model.
Furthermore, both dendritic and faceted growth morphol-
ogies are important for oxide systems and are frequently
observed simultaneously in multi-component oxides.

In this work, we develop a phase field model for isother-
mal crystallization of oxide systems and work out a coupling
with the FACT thermodynamic databases for oxide sys-
tems. The model is constructed using a phase field model
for multi-phase systems, based on the grain growth model
of Moelans et al. [14] and the multi-component approach
of Tiaden et al. [12] or Kim et al. [15]. The formulation of
the model is given in Section 2 and the link with thermody-
namic databases for oxide systems is explained in Section 3.
Next, the numerical implementation and simulation param-
eters are described in Section 4. The capabilities of the model
are illustrated and discussed for three case studies in Section
5. Finally, in Section 6, we briefly summarize the results.

2. Model description

2.1. Multiphase approach

In a phase field model for microstructure evolution, the
equations are defined and solved over the whole system
without prior knowledge about the position of the inter-
faces. Microstructure evolution in an isothermal system at
constant pressure is driven by minimization of the total
Gibbs energy. The microstructure of the system is described
by a set of continuous non-conserved phase field variables,
gið~r; tÞ, which are related to the local phase fractions. The
total energy, F [J], of a heterogeneous isothermal system
with p phases and c components is formulated as a func-
tional of the non-conserved phase field variables, gið~r; tÞ,
and the conserved concentration variables, xkð~r; tÞ:

F ¼
Z
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The first term is called the homogeneous free energy, f0,
and is given by:
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This function has minima at (g1, . . . ,gi, . . . ,gp) =
(0, . . . , 1, . . . , 0), which implies a phase field variable equal
to 1 where the respective phase is physically present and
0 elsewhere in the system. The second term is the gradient
free energy term, which is responsible for the diffuse char-
acter of the interfaces where the phase field variables of
adjacent phases vary smoothly from 0 to 1 and vice versa.
The third term is the contribution of the Gibbs energies of
the phases, fi (J m�3), to the total system energy where the
phase fraction /i is defined as:

/i ¼
g2

iPp
j¼1g

2
j

ð3Þ
Note that these phase fractions, /i, sum up to 1 by defini-
tion, whereas the phase variables, gi, do not [16]. This is in
contrast with the multi-phase field model of Steinbach et al.
[11], where the phase field variables, /i, represent the phase
fractions and, therefore, they are subject to an extra con-
straint,

Pp
i¼1/i ¼ 1. The evolution equation for each phase

field variable gi follows a time-dependent Ginzburg–Lan-
dau equation for non-conserved phase fields:
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The model parameters j, m and L in the equations above
are calculated using the following expression:
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for j and analogous expressions for m and L. The param-
eters mi,j, ji,j, c and Li,j relate to the interface width, energy
and mobility [14]. At an interface between two phases i and
j, only gi and gj differ from 0, hence j = ji,j at the interface
between phases i and j. At triple and multi-junctions, the
values for j, m and L interpolate between their values of
the adjacent phases. In the presented model, c = 1.5, and
therefore the surface energy ri,j (J m�2) and width li,j (m)
of a certain interface ij can be calculated analytically [14]:

ri;j ¼
ffiffiffi
2
p

3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
mi;jji;j
p ð6Þ

li;j ¼
ffiffiffiffiffiffiffiffiffi
8ji;j

mi;j

s
ð7Þ
2.2. Multicomponent approach

Eiken et al. [17] introduced a framework for the chemi-
cal thermodynamics in a phase field model for multi-
component systems in which the diffuse interface is
assumed to be a mixture of the adjacent phases, each with
its own phase composition. The phase concentrations xi

k of
component k in phase i differ from the local concentrations
xk in the interface region. They are unambiguously defined
at each point of the system by the requirement of locally
equal diffusion potentials and a mass balance, at constant
molar volume, for that component:

~l1
k ¼ � � � ¼ ~li

k ¼ � � � ¼ ~lp
k ð8Þ

xk ¼
Xp

i¼1

/ix
i
k ð9Þ

The Gibbs energies of the different phases, fi in Eq. (1), are
evaluated for the phase concentrations xi

k.
In many aspects, it is more suitable to use oxides as com-

ponents (CaO, SiO2, . . .) in a phase field model for oxide
systems. First, oxides are often chosen as the independent
components in the thermodynamic models for oxide sys-
tems, such as the Modified Quasi-Chemical Model
[13,18]. Secondly, experimental diffusion data are fre-
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quently reported in the oxides [19]. Thirdly, choosing oxide
components allows for distinguishing between different
valencies (e.g. FeO and Fe2O3). In a system with c compo-
nents, c � 1 independent components and one reference
component are chosen. In this phase field model for silicate
systems, SiO2 is chosen as the reference component. The
diffusion potentials ~li

k of these independent components
are defined as the first derivative of the Gibbs energy f i

or, analogously, as the difference between the chemical
potential of component k and SiO2 [17]:

~li
k ¼

@f i

@xi
k

¼ li
k � li

SiO2
ð10Þ

For each component k, Eqs. (8) and (9) form a system of p

equations and p variables, namely the phase concentrations
of component k.

2.3. Phase field equations

The functional derivative on the right-hand side of Eq.
(4) is calculated according to the Euler–Lagrange theorem
for a functional of the form F ¼

R
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The last equation is derived using the equality of diffusion
potentials (8) and the mass balance (9) for all components
[16]. Many minerals exhibit a faceted form when growing
in a melt [1] at low supersaturations. At high supersatura-
tion, the mineral can grow in dendrite form. Since, for
oxide systems, faceted growth is generally dictated by a
strong anisotropy in interface kinetics, faceted growth is
modeled in the phase field model using a strong anisotropy
in the kinetic coefficient, L, which is related to the interface
mobility:

Li;j ¼ Li;jwi;j hi;j � h0
i;j

� �
ð15Þ

with hi,j the orientation of the interface:

hi;j ¼ arctan
rygi �rygj

rxgi �rxgj

����
���� ð16Þ

The function wi,j must have sharp cusps at the facet plane
orientations. A possible function to incorporate such cusps
is [20]:

wi;jðhÞ ¼ 1� bi;j þ 2bi;j tanh
ri;j
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ai;j

2
h

� 	�� ��
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ð17Þ
Here, bi,j is a measure for the depth of the cusps and hence
the mobility difference between the fast and slow crystal
planes. On the other hand, ri,j is a measure of the sharpness

of the cusps and controls therefore the corner formation at
the edges of two crystal planes. ai,j is the mode of anisot-
ropy and mostly 4 or 6 for common minerals like spinel
or corundum. In the case of dendrite growth, the mineral
grows diffusion controlled and the morphology is deter-
mined by weak anisotropy in the interface energy. The
orientation dependent interface energy ri,j induces orienta-
tion dependent mi,j and ji,j parameters for each interface.
Both parameters have the same orientation-dependent
function ki,j(hi,j):

ji;j ¼ ji;jki;jðhi;jÞ ð18Þ
mi;j ¼ mi;jki;jðhi;jÞ ð19Þ

The function ki,j(hi,j) describes the anisotropy of the interfa-
cial energy, and for weak anisotropy is taken as follows
[9]:

ki;jðhi;jÞ ¼ 1þ di;j cosðai;jhi;jÞ ð20Þ

where ai,j is the mode of the anisotropy and di;j <
1=ða2

i;j � 1Þ is the amplitude of the anisotropy. The varia-
tional derivation of the phase field equations is more com-
plicated due to its dependence on $gi. However, the model
remains rotation invariant [21].

In the current model, every interface can have arbitrary
properties and strong anisotropy in the interface mobility
or weak anisotropy in the interfacial energy. Fig. 1 shows
a simulation with three phase fields where two phases grow
simultaneously from a melt but with different growth
kinetics.

2.4. Diffusion equations

The diffusion equation for each of the c � 1 independent
components is given by [17]:
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The elements Mi
kl form a mobility matrix Mi for phase i,

which relates to the interdiffusion matrix Di and thermody-
namic factors matrix Gi according to the following formula
[17]:

Di ¼M iG i Gi
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In oxide melts, the cross-diffusion or uphill diffusion effects
can be substantial [22]. It is therefore important to incorpo-
rate the full mobility matrix of each solution phase in the
model. The diffusion equations are expressed in mole frac-
tion of the oxide components, which is justified since the
diffusion is assumed to be substitutional in terms of the
oxide components.
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Fig. 1. An example simulation for a binary model system to show the effect of different interface kinetics on the growth form of a crystal. The lower left
interface has a strongly anisotropic mobility while the upper right interface has an isotropic mobility but weak anisotropy in the interfacial energy. Both
anisotropy symmetries are fourfold. The interfaces are marked in bold lines and the colored thin lines indicate the contour lines of the diffusion field. The
dotted line indicates the position of the initial nucleus. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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3. Coupling with thermodynamic database

It gives a substantial numerical advantage to approxi-
mate the Gibbs energies of the different phases, f i, in
Eqs. (8) and (9) by a second-order Taylor approximation,
f̂ i, around x̂i ¼ ðx̂i

1; . . . ; x̂i
k; . . . ; x̂i
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The parameters arrays A, B and C are retrieved at every
concentration x̂i from a thermodynamic database as:
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Fig. 2 shows, for three concentrations x̂i ¼ f�x1; xL
eq;�x2g, the

second-order approximation of the Gibbs energy of the li-
quid phase. Eqs. (8) and (9) now result in a linear system of
equations where A, B and C are calculated at the local
phase composition and the system of equations is solved
for the new phase composition. The phase field model is
linked with the FToxid database for oxide systems from
the FACTSage package [23]. Therefore, the composition
domain is discretized on a square grid (Dx = 0.001) and
A, B and C are calculated at every grid point using Che-

mApp [24]. Since ChemApp contains no built-in routine
to calculate the second derivative of the Gibbs energy of
a phase, a centered finite difference scheme,
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was implemented to determine these derivatives. It seems
that dx = 10�6 is a good choice for the finite difference in
the equation above. At large dx, the discretization is too
coarse to yield reliable values for the derivatives, while
for decreasing dx the accuracy of the ChemApp routines
decreases. The calculated molar Gibbs energies and diffu-
sion potentials are divided by a constant molar volume to
obtain volumetric quantities. The Gibbs energy in Eq.
(14) and diffusion potentials in Eqs. (14) and (21) are calcu-
lated at the local phase concentrations using bilinear inter-
polation between the tabulated values of respectively C and
B (see Eq. (24)). The second-order approximation of the
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Gibbs energies in Eq. (23) is only used to solve the system
of Eqs. (8) and (9).

The solid phases in oxide systems are often modeled as
purely stoichiometric compounds in thermodynamic dat-
abases, which is incompatible with a continuum model for-
mulation and does not allow for diffusion through this
phase. Therefore, a paraboloid Gibbs energy is constructed
for stoichiometric phases, inspired by the technique pro-
posed in [25], that ensures the correct Gibbs energy value
at the stoichiometric composition and for all components
the same chemical potentials as in the solution phase at a
given initial composition, as shown in Fig. 2. This require-
ment determines the values of B and C. Furthermore, the
curvature of the paraboloid, A, has to be sufficiently high
to minimize the solubility in the stoichiometric phase and
the deviation from the expected equilibrium compositions
in the coexisting solution phases (see Section 5.2). The cur-
vature is also limited because the linear system to solve the
phase concentrations becomes ill-conditioned for high cur-
vatures. Stoichiometric phases can thus be treated in a sim-
ilar way as the solution phases in Eqs. (8) and (9), with A,
B, C constant for all phase concentrations.

4. Numerical implementation and simulation setup

4.1. Numerical implementation

The phase field and diffusion equations, (11) and (21),
are discretized on an equidistant numerical grid using finite
differences in the FORTRAN programming language.
Central finite differences are used in space and forward dif-
ferences in time. A nine-point stencil is used to calculate the
spatial gradients to reproduce the anisotropic behavior of
the interfaces with higher accuracy. The gradient in one
direction at a certain grid point is weighted with the gradi-
ents with the adjacent grid points in the other direction,
using the weighing factors 1

8
; 6

8
; 1

8
. The numerical calculation

of the gradient in x-direction of an arbitrary variable f at
grid point (x,y) is given:

rxf ¼
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8
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The boundary conditions (Neumann or periodic) are
implemented using ghost nodes at the border of the numer-
ical domain. The program sequence for every time step is as
follows:

1. updating the values of gi and xk on the ghost nodes
according to the boundary conditions,

2. calculating /i (Eq. (3)) and xi
k (by solving a linear system

of Eqs. (8) and (9)),
3. calculating j, L and m (Eq. (5)),
4. calculating new phase field values, gi (Eq. (11)),
5. calculating new component concentrations, xk (Eq. (21)).

The linear system of Eqs. (8) and (9), to calculate the
phase concentrations, is numerically solved using the lud-
cmpand lubksb subroutines from Ref. [26]. There must be
at least 8 grid points in the diffuse interface to resolve the
phase field profiles well. The program code is parallelized
and executed on a high performance computer cluster
[27] using 100 processors for the two-dimensional (2-D)
simulations shown in Fig. 8. The phase field equations
are only solved in the proximity of interfaces to increase
the numerical efficiency, while the diffusion equations are
solved everywhere.

4.2. Simulation setup

The presented model is employed for two 1-D and one
2-D simulations of a solid phase growing or dissolving in
a CaO–Al2O3–SiO2 melt, for which an isothermal section
at 1350 �C is given in Fig. 3. In the simulation, there are
two phases present (g1 = liquid, g2 = solid) and 1 interface
(12 = solid–liquid). The interface width for both cases is
chosen in the thin interface limit [28], which gives
l12 = 10�7 m. Choosing eight grid points in the diffuse
interface yields a spatial discretization of 0.125 � 10�7 m.
The time step is restricted by the diffusion equations and
is taken at Dt = 3.5 � 10�9 s for 1-D systems and Dt =
2.0 � 10�9 s for 2-D systems. A value of r12 = 0.3 J m�2
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is chosen, which implies j12 = 0.225 � 10�7 J m�3 and
m12 = 1.8 � 107 J m�1. The anisotropy in interface mobil-
ity and energy is set to 0 in 1-D simulations and A of the
stoichiometric solid phase is taken to be 10 times larger
than that of the liquid phase at its initial composition.
The phase field mobility, L12, is chosen to ensure diffusion
controlled growth (or dissolution) of the mineral (as
explained in Ref. [16]). Therefore L12 = 0.01 for the growth
of wollastonite (see Section 5.3) and L12 = 0.0005 for the
dissolution of gehlenite (see Section 5.1). The molar volume
of all components in all phases is taken to be constant and
is calculated from Ref. [29]. An average value of
Vm = 23.6 � 10�6 m3 mol�1 is obtained for the composi-
tion range of the performed simulations. For the crystalliz-
ing wollastonite, the mobility matrix of the liquid is
calculated using Eq. (22). The interdiffusion matrix DL is
calculated at T = 1350 �C using Ref. [30] and the thermo-
dynamic factors matrix GL is calculated at the initial liquid
composition using ChemApp:

DL ¼
8:734 �2:464

�3:948 5:977


 �
� 10�11 ½m s�2� ð27Þ

GL ¼
1:375 1:420

1:420 4:307


 �
� 1010 ½J m�3� ð28Þ

ML ¼ DLðGLÞ�1 ¼
0:1053 �0:0405

�0:0653 0:0354


 �
� 10�19 ð29Þ

For the dissolving gehlenite, the diffusion matrix is of the
same order of magnitude but the diagonal elements are al-
tered to investigate their effect on the tie-line selection (see
Fig. 4). The mobility matrix MS in the solid phase does not
affect steady-state growth and is taken to be of the same or-
der of magnitude as ML in the liquid phase to avoid solute
trapping effects [31], and off-diagonal elements equal to 0.

5. Simulation results and discussion

5.1. Gehlenite dissolving in a CaO–Al2O3–SiO2 melt

A first simulation is done where gehlenite is brought into
contact with a liquid, which has a composition outside the
two-phase region, at 1400�. At the initial condition, half of
the simulation domain is gehlenite at its stoichiometric
composition ðx0

CaO ¼ 0:5; x0
Al2O3

¼ 0:25Þ while the other half
is liquid with a composition of ðx0

CaO ¼ 0:45; x0
Al2O3

¼ 0:10Þ.
The resulting diffusion profiles are plotted in Fig. 4 for
three different ratios of diffusion mobilities. These diffusion
profiles clearly show the influence of the diffusion kinetics
in the liquid on the local equilibrium or tie-line at the
solid–liquid interface. The off-diagonal elements in the
mobility matrix of the liquid are 0, so all cross-diffusion
effects are caused by the concentration-dependent chemical
potentials of both independent components.
5.2. Validation of the paraboloid Gibbs energies for

stoichiometric phases

As explained in Section 3, a paraboloid Gibbs energy is
constructed for stoichiometric phases, such as gehlenite.
For a stoichiometric phase, A, B and C are constant over



CaO Al2O3

SiO2

x = 0.379
x = 0.256

CaO

Al2O3

x = 0.529
x = 0.092

CaO

Al2O3

x = 0.450
x = 0.100

CaO

Al2O3

Fig. 4. Magnification of the isothermal section at 1400 �C at the two-
phase gehlenite-liquid region. The simulation result of dissolving gehlenite
is plotted on this section. The inset at the bottom left indicates the position
of the two-phase region, considered in the simulation, in the ternary phase
diagram. The composition of the outer points of this region are given as
well. The figure shows how the ratio of diffusion mobilities in the liquid
phase influences the selection of the tie-line in the two-phase region. Note
that the off-diagonal elements are 0 and all cross-diffusion effects are
caused by the concentration-dependent chemical potentials of both
independent components.
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Fig. 5. Magnification of the isothermal section at 1400 �C at the two-
phase gehlenite-liquid region to investigate the influence of the artificial
Gibbs energy of the stoichiometric phase, gehlenite. The four squares
indicate which tie-lines were considered to construct the paraboloid Gibbs
energy. From the resulting coinciding diffusion profiles, it is clear that this
artificial Gibbs energy has minimal influence on the results.

2162 J. Heulens et al. / Acta Materialia 59 (2011) 2156–2165
the whole composition domain. To avoid numerical prob-
lems with solving the system of Eqs. (8) and (9) in the first
time steps, the paraboloid is constructed so that the stoichi-
ometric phase is initially in equilibrium with the liquid
phase. In a ternary system, the liquid interface composition
is a priori not known. Fig. 5 shows, however, that this ini-
tial equilibrium, used to construct the paraboloid, does not
affect steady-state growth of the solid phase. The four
squares in Fig. 5 indicate the total system compositions
used to define the initial equilibrium or tie-line. Since the
resulting tie-lines from the four simulations coincide, it is
clear that the constructed paraboloid Gibbs energy will
have a minimal influence on the results if the paraboloids
are taken to be at least 10 times steeper than the Gibbs
energies of the solution phase.

5.3. Wollastonite crystallizing in a CaO–Al2O3–SiO2 melt

A second simulation is done with the system composi-
tion in the two-phase region wollastonite-liquid at
1350 �C, for which the isothermal section is given in
Fig. 3. Wollastonite (CaO�SiO2) is located at the boundary
of the composition domain (edge of phase diagram) and
therefore its Gibbs paraboloid is moved slightly inwards
and constructed with a stoichiometric composition at
ðx0

CaO ¼ 0:499; x0
Al2O3

¼ 0:002Þ. As the initial condition, a
nucleus of 12 grid points of wollastonite is placed at the left
side of the simulation domain. The initial liquid concentra-
tion is ðx0
CaO ¼ 0:455; x0

Al2O3
¼ 0:06Þ, while the solid is ini-

tialized at its stoichiometric composition. The resulting
composition profiles for steady-state growth are plotted
in Fig. 6 and mapped on a ternary diagram in Fig. 7.
Fig. 7 shows that the tie-line, going through the initial
liquid composition, is not selected due to uphill diffusion
of CaO during growth of wollastonite. The diffusion profile
of CaO in Fig. 6 goes through a minimum because of two
competing effects. Close to the solid–liquid interface, CaO
diffuses uphill because of the steep gradient in Al2O3 con-
centration. Further away from the interface, the gradient
in Al2O3 becomes smaller and CaO diffuses according to
its own concentration gradient.

5.4. Tie-line selection in a ternary system

The influence of the diffusion mobilities on the tie-line
selection is clearly shown in Figs. 4 and 7. In a diffusion-
controlled phase transformation L ? S in a ternary
system, the interface velocity v is determined by two simul-
taneous flux balances at the interface:

1

V m
ðxCaO;L � xCaO;SÞv ¼ J CaO;L � J CaO;S ð30Þ

1

V m
ðxAl2O3;L � xAl2O3;SÞv ¼ J Al2O3;L � J Al2O3;S ð31Þ

where the growth of a shape-preserving (planar, cylindri-
cal, spherical) solid is parabolic in time, s ¼ a

ffiffi
t
p

[19]. The
growth rate constant a and the resulting tie-line, or inter-
face concentration xk,i, can be found by solving these flux
balances simultaneously. For the crystallizing wollastonite,
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with the initial liquid composition is not selected during growth of
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in Fig. 7, a was determined from the phase field simulation,
giving a = 3.5 � 10�6 m s�1/2. An analytical solution for
this problem is only available for constant diffusivities
and if cross-diffusion effects are neglected or one species
diffuses much faster than the other [32,33], neither of which
is the case in the considered oxide systems. On the other
hand, a phase field model incorporates the full diffusion
matrix correctly for all phases and ensures chemical equi-
librium at the interface if the interface mobility is chosen
appropriately [16]. Therefore, it will automatically select
the correct tie-line and interface velocity, obeying the equa-
tions above. Figs. 7 and 4 show the tie-line selection for
crystallizing and dissolving phases in oxide melts and its
dependency on the diffusion mobilities. A phase field model
is thus an elegant tool with which to investigate crystalliza-
tion in higher order systems and predict tie-line selection
with arbitrary diffusion properties.

5.5. Dendritic crystallization of wollastonite

A number of 2-D simulations is done with a similar
setup to that used in Section 5.3. In this series of simula-
tions, the interfacial energy of the solid–liquid interface is
varied from 0.3 to 0.6 J m�2 and the resulting interface
morphologies are plotted in Fig. 8. The sixfold anisotropy
was observed experimentally [34]. For a given under- or
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supersaturation D of the melt, the Peclet number p ¼ qv
2�D is

determined by the Ivantsov formula [35]:

D ¼ ffiffiffiffiffiffi
pp
p

expðpÞerfcð ffiffiffipp Þ ð32Þ
This solution for free-growing needle crystals without
interfacial energy does not select separate values for the
dendrite tip radius q or its velocity v. Only if interfacial en-
ergy is taken into account is a single set of (q,v) selected.
Fig. 8 shows that, for increasing interfacial energy, the den-
drite tip radius q increases while the velocity decreases. A
more detailed study of the crystallization behavior of wol-
lastonite and comparison with experiments will be elabo-
rated in future work.

6. Conclusions

The presented phase field model is able to describe iso-
thermal crystallization of stoichiometric solid phases in
oxide melts. The interfacial mobility can show strong
anisotropy and the interfacial energy can have weak anisot-
ropy to treat both faceted and dendritic crystallization. The
thermodynamic functions in the model are retrieved from
the FACT database for oxide systems using ChemApp.
The Gibbs energies of stoichiometric phases are con-
structed assuming a paraboloid composition dependence.
It is shown that the construction of the paraboloid function
has a negligible effect on the tie-line selection if the parab-
oloid is at least 10 times steeper than the Gibbs energies of
the solution phases. Three case studies of crystallizing and
dissolving phases in an oxide melt are discussed. It is illus-
trated that the model can treat arbitrary diffusion effects,
such as uphill diffusion, that influence phase transforma-
tions in multi-component systems. Finally, in combination
with experiments, the model will be very helpful to study
the effect of interfacial energy and anisotropy on dendrite
growth in ternary and multi-component oxide melts.
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