
Evaluation of interfacial excess contributions in different phase-field models for elastically

inhomogeneous systems

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2013 Modelling Simul. Mater. Sci. Eng. 21 055018

(http://iopscience.iop.org/0965-0393/21/5/055018)

Download details:

IP Address: 134.58.253.57

The article was downloaded on 21/06/2013 at 13:22

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0965-0393/21/5
http://iopscience.iop.org/0965-0393
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING

Modelling Simul. Mater. Sci. Eng. 21 (2013) 055018 (22pp) doi:10.1088/0965-0393/21/5/055018

Evaluation of interfacial excess contributions in
different phase-field models for elastically
inhomogeneous systems

A Durga, P Wollants and N Moelans

Department of Metallurgy and Materials Engineering, Faculty of Engineering, KU Leuven,
Kasteelpark Arenberg 44 Bus 2450, 3001 Heverlee, Belgium

E-mail: durga.ananthanarayanan@mtm.kuleuven.be

Received 25 January 2013, in final form 30 April 2013
Published 11 June 2013
Online at stacks.iop.org/MSMSE/21/055018

Abstract
In elastically inhomogeneous solid materials, the presence of strains causes
changes in both morphology and phase equilibria, thereby changing the
mechanical and chemical properties. For any given initial phase- and grain-
structure, it is difficult to determine experimentally or analytically these changes
in properties. Phase-field models coupled with micro elasticity theory can
be used to predict the morphological and chemical evolution of such strained
systems, but their accuracy with respect to interfacial excess contributions has
not been tested extensively. In this study, we analyse three existing phase-
field schemes for coherent two-phase model systems and a Cu6Sn5–Bct-Sn
system. We compare the chemical composition and stress state obtained in
the simulations with analytical values calculated from Johnson’s (Johnson
1987 Metall. Trans. A 18 233–47) model. All schemes reproduce the shift
in chemical composition, but not the strains. This deviation is due to excess
interfacial energy, stresses, and strains not present in the analytical results,
since all three schemes are based on assumptions different from the stress and
strain relations at equilibrium. Based on this analysis, we introduce a new
scheme which is consistent with the analytical calculations. We validate for the
model system that this new scheme quantitatively predicts the morphological
and chemical evolution, without any interfacial excess contributions and
independent of the diffuse interface width.

(Some figures may appear in colour only in the online journal)

1. Introduction

In the field of materials science, analysis of microstructural evolution in solid-state systems is an
important problem, as it has applications in different fields like ferrous metallurgy, superalloys
and solders. A significant feature of studying phenomena in the solid state, compared to
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fluids, is the presence of elastic strains and stresses in the material, which can greatly alter the
chemical behaviour, morphology, growth kinetics and mechanical behaviour of the system.

In the presence of elastic strains, the chemical equilibrium of the system shifts [1]
due to a shift in the Gibbs energy curves. In previous studies, Cahn and Larché [1] have
developed a method to calculate the phase diagram for a binary two-phase coherent system with
equal stiffnesses and Pfeifer and Voorhees [2] for inhomogeneous binary two-phase systems.
Johnson [3] has further developed a model to compute the change in equilibrium composition
for an inhomogeneous system with a second-phase precipitate in an infinite supersaturated
matrix in the presence of external and internal strains. However, in general, the change
in chemical composition and the elastic strain generated due to misfit cannot be calculated
analytically for complex, finite, realistic systems.

Phase-field modelling combined with micro-elasticity theory can be used as a tool to
study the elastic effects on solid-state phase transformations and grain growth for any arbitrary
morphology [4–6]. The elastic energy density is formulated in the small-strain limit as
f el = 1

2εel
ijCijklε

el
kl , where Cijkl is the stiffness, a fourth-order tensor, and the elastic strain εel

kl , a
second-order tensor, is the difference between total strain εtot

kl and eigenstrain ε∗
kl (Einstein

summation notation is used for all tensorial relations including the above). The elastic
stresses and strains have been defined in the diffuse interface by interpolating their values
in the bulk phases using a number of schemes, three of which we discuss below. The bulk
elastic and chemical properties predicted by these phase-field simulations are influenced by
interfacial excess contributions, if any. Even though phase-field models coupled with micro-
elasticity theory have been applied to many realistic systems, it still remains a challenge to
formulate the elastic energy in such a way that it creates no excess interfacial energy [11]. This
excess interfacial energy scales with the diffuse interface width and, therefore, the phase-field
simulations are no longer quantitative. Analysing this effect, which has not yet been studied
extensively, and finding an interpolation scheme that avoids this, is the main concern of this
article.

The most widely applied interpolation scheme is Khachaturyan’s (KHS) [7], wherein the
stiffness Cijkl and eigenstrain ε∗

kl are interpolated as Cijkl = ∑
α φαCα

ijkl and ε∗
kl = ∑

α φαε
∗,α
kl

respectively, where φi (i = α, β, ...) are the interpolation functions and α, β, ... the different
phases. This scheme has been implemented in phase-field models to study a wide variety of
problems such as spinodal decomposition in elastically inhomogeneous thin films [8], growth
of solid-state dendrites [9] and grain boundary migration in Cu bicrystals [10].

Another scheme is Steinbach–Apel’s (SAS) [11], wherein the elastic strains are
interpolated as εel

kl = ∑
α φαε

el,α
kl . For the interpolation of stiffnesses, elastic stress is assumed

to be equal in all the phases (Reuss–Sachs’ condition) at every point in the interface. This gives
rise to an interpolation of the compliances, the inverse of the stiffnesses, as Sijkl = ∑

α φαSα
ijkl .

This scheme has been used to study different problems like pearlite formation in Fe–C [12],
growth of Ni4Ti3 particles in Ni–Ti shape memory alloys [13] and grain growth and texture
evolution in Cu [14].

Ammar et al [15] have implemented KHS and two other alternative schemes, one based
on Voigt–Taylor’s assumptions [16] and the other on Reuss–Sachs’ assumptions, but different
from that proposed by Steinbach and Apel [11]. In the Voigt–Taylor scheme (VTS) [15, 16], the
total strain is assumed to be equal in all the phases at every point in the interface. Furthermore,
the elastic stress σkl is interpolated as σkl = ∑

α φασα
kl . They found that, for elastically

homogeneous systems, the VTS and KHS show the correct change in chemical composition,
whereas their Reuss–Sachs’ scheme does not.

KHS and SAS were implemented in previous simulations by some of the authors [17] for
Cu6Sn5 precipitate evolution in Bct-Sn matrix of a Cu–Sn binary alloy. The stresses, strains and
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Figure 1. Illustration of the binary 2-phase 2D system considered in this study. (a) Configuration.
(b) Strain and stress profiles as calculated from Johnson’s model (only non-zero quantities
displayed).

morphology predicted by the two schemes were different, whereas the compositions predicted
were equal.

In this paper, a 2D binary two-phase inhomogeneous system with a specific geometry
is considered, for which the elastic strains and the change in equilibrium composition are
calculated analytically using Johnson’s [3] approach. KHS, SAS and a slightly modified VTS
are implemented and analysed for this system. The Cu6Sn5–Bct-Sn system is further studied
in this paper using KHS, SAS and VTS. The main aim of our work is to find an interpolation
scheme that gives results consistent with the analytical model independent of the value of the
diffuse interface width, so that it can be applied to more complex, realistic morphologies for
which analytical calculations are not possible.

The rest of the paper is organized as follows. In section 2, the heterogeneous strain
generated due to misfit and change in composition due to elastic strains are calculated
analytically for the model 2D system. In section 3, the formulation of the phase-field model for
the three schemes, along with the method used to solve the elasticity equations, is described.
Simulation results obtained for a realistic Cu6Sn5–Bct-Sn alloy system and several model
systems for which the stiffnesses and eigenstrains are of different forms are presented in
section 4. Bulk properties and interfacial excess quantities are computed and compared with the
analytical results. In section 5, an alternative scheme with interfacial conditions in agreement
with those in the analytical model is proposed and validated for the model 2D system, followed
by the main conclusions from this work in section 6.

2. Analytical sharp interface models

Johnson [3] gave a sharp interface description to calculate the mechanical and chemical
equilibrium analytically for an elastically inhomogeneous solid-state system with a second-
phase spherical precipitate in an infinite supersaturated matrix. We apply a similar procedure
here, considering a 2D binary two-phase (α–β) rectangular system with equal areas of the two
phases (Aα = Aβ), as shown in figure 1(a).

The interface between the two phases is assumed to be coherent. Undeformed α phase is
chosen as the reference state (ε∗,α

kl = 0) and non-zero eigenstrains are present in the β phase
only (ε∗,β

kl �= 0). The elastic moduli for the two phases are chosen such that the components
C1112 and C2212 are zero, which is valid for most crystal structures. The applied strains and
eigenstrains are assumed to have zero shear components.

3
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2.1. Mechanical equilibrium

In the small-strain limit, elastic stress is given by Hooke’s law:

σij = Cijklε
el
kl . (1)

The elastic strain for each phase is defined as the difference between the total strain and the
eigenstrain or stress–free strain ε∗

kl :

εel
kl = εtot

kl − ε∗
kl . (2)

Here, we consider only eigenstrain arising from the difference in lattice parameters of the two
phases. Moreover, following Khachaturyan’s approach [7], the total strain is considered as the
sum of the homogeneous or applied strain εkl , and local heterogeneous strain δεkl :

εtot
kl = εkl + δεkl, (3)

with the homogeneous strain defined such that∫
V

δεij d3r = 0 (4)

and the heterogeneous strain related to the local displacement vectors as:

δεkl = 1

2

[
∂uk(

−→r )

∂rl

+
∂ul(

−→r )

∂rk

]
, (5)

where ui(
−→r ) is the ith component of the displacement vector.

When both phases are in equilibrium, the following conditions should be satisfied [3]:

uα
i = u

β

i (continuity at the interface + no slip), (6)
∂σij

∂rj

= 0 (mechanical equilibrium everywhere), (7)

σα
ijn

α
j + σ

β

ij n
β

j = 0 (continuity of tractions at the interface), (8)

where nα
j and n

β

j are the outward unit normals from α and β, respectively, at the interface.
Because of the system geometry and with zero shear components of homogeneous and
eigenstrains, ε

el,α
12 = 0. Since C1112 = C2212 = 0, it follows from equation (1) that σα

12 = 0.
Moreover, from the no-slip condition (6), uα

2 = u
β

2 = 0. Therefore, δεα
22 = δε

β

22 = 0.
Equation (7) for i = 1 becomes ∂σα

11/∂r1 = 0 or ∂(Cα
1111δε

α
11 + Cα

1122δε
α
22 + Cα

1112δε
α
12)/∂r1 =

0. From (5), ∂2uα
1 /∂r2

1 = 0. Therefore, δεα
11 is a constant and u1 varies linearly with position

in the α phase. Similarly, δεβ

11 is a constant and u
β

1 varies linearly with position in the β phase.
Evaluation of equation (4) for i = j = 1 then gives∫

Aα

δεα
11 d3r +

∫
Aβ

δε
β

11 d3r = 0, (9)

δεα
11 = −δε

β

11, (10)

since the areas of α and β are equal. Furthermore, since nα
1 = −n

β

1 , equation (8) gives
σα

11 = σ
β

11. Therefore, using (1)–(3), we get

δεα
11 = C

β

1111(ε11 − ε
∗,β

11 ) + C
β

1122(ε22 − ε
∗,β

22 ) − Cα
1111ε11 − Cα

1122ε22

Cα
1111 + C

β

1111(Aα/Aβ)
. (11)

Displacements, strain and stress profiles calculated using this sharp interface description
are illustrated in figure 1(b). Only the quantities that are non-zero are shown.
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2.2. Chemical equilibrium

In the presence of elastic stresses, the new equilibrium chemical compositions, ce
α and ce

β , can
be obtained using the derivation of Johnson [3] assuming infinite interface curvature:

ce
α = cα,0 +

(σ
β

klε
el,β
kl − σα

klε
el,α
kl )/2 + (ε

el,α
kl − ε

tot,β
kl )σ α

kl

Aα(cβ,0 − cα,0)
, (12)

ce
β = cβ,0 +

(σ
β

klε
el,β
kl − σα

klε
el,α
kl )/2 + (ε

el,α
kl − ε

tot,β
kl )σ α

kl

Aβ(cβ,0 − cα,0)
. (13)

Here, Aα and Aβ are the second derivatives of the chemical energy densities f ch
α and f ch

β of the
two phases respectively and cα,0 and cβ,0 are the equilibrium compositions of the two phases
in the absence of strains.

3. Phase-field model description

We take up a binary (A–B) two-phase (α–β) solid-state coherent system, in the same
configuration as figure 1(a), for performing phase-field simulations. The driving forces from
chemical and elastic strain energies are considered. The system can be described by one
independent composition variable, c, taken as the molar fraction of element B, and one phase-
field variable φ, which takes the value 1 in the bulk of α phase, 0 in the bulk of β phase and
varies smoothly across the interface between the two phases. The total free energy functional
for the system is formulated as:

F =
∫

V

(
f int + f ch + f el

)
dV, (14)

where f int is the interfacial energy density, f ch the chemical free energy density and f el the
elastic energy density. The interfacial and chemical energies are formulated as per the Kim
et al [18] model and three different schemes are considered for the elastic energy formulation
as described below.

3.1. Interfacial energy density

The interfacial energy density is of the form [18]:

f int = κ

2
(
−→∇ φ)2 + Wg(φ), (15)

giving

∂f int

∂φ
= −κ

−→∇ 2
φ + Wg′(φ), (16)

where κ is the gradient energy coefficient, g(φ) = φ2(1 − φ)2 the double-well function and W

the depth of the double-well. κ and W are parameters related to the interfacial energy σint and
the interfacial width lint as σint = 1

3

√
κW/2 and lint = α

√
2κ/W , respectively. With α = 2.2,

the interfacial width is defined as the length across which φ changes from 0.1 to 0.9 when the
system is at equilibrium.

3.2. Chemical energy density

The chemical energy density is interpolated between the energy densities of the two phases [18]
using a function p(φ) = φ3(6φ2 − 15φ + 10) [19]:

f ch = p(φ)f ch
α + [1 − p(φ)]f ch

β . (17)

5
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In this study, f ch
α and f ch

β are taken as parabolic functions of the composition:

f ch
α = Aα

2
(cα − cα,0)

2; f ch
β = Aβ

2
(cβ − cβ,0)

2, (18)

where Aα , Aβ , cα,0, and cβ,0 are constants. Phase compositions cα and cβ are introduced,
which relate the overall composition c to the phase-field variable φ as

c = p(φ)cα + [1 − p(φ)]cβ. (19)

It is postulated by Kim et al [18] that, at every point in the system, there is equal diffusion
potential, i.e.

µα = µβ = µ = ∂f ch

∂c
= Aα(cα − cα,0) = Aβ(cβ − cβ,0). (20)

The derivative of the chemical energy density with respect to φ is given by (see
appendix A):

∂f ch

∂φ
= p′(φ)[f ch

β − f ch
α + µα(cβ,0 − cα,0)]. (21)

3.3. Elastic energy density

Elastic energy can be incorporated in the framework of phase-field modelling using an
appropriate interpolation scheme for defining the elastic strain, stress, stiffness or energy
at the interface using their values in the bulk of the two phases. In this work, KHS, SAS and
a VTS are considered for analysis. All elastic properties are assumed to be functions of the
phase-field φ and independent of the composition.

3.3.1. Khachaturyan’s scheme (KHS). In KHS [7, 15], the stiffness is interpolated using the
interpolation function p(φ) as:

Cijkl = p(φ)Cα
ijkl + [1 − p(φ)]Cβ

ijkl, (22)

where Cα
ijkl and C

β

ijkl are constants. The eigenstrain is also interpolated as ε∗
kl = p(φ)ε

∗,α
kl +

[1 − p(φ)]ε∗,β

kl . The elastic energy density and its derivative with respect to φ are given by

f el = 1
2εel

ijCijklε
el
kl, (23)

∂f el

∂φ
= −p′(φ)(ε

∗,α
ij − ε

∗,β

ij )Cijklε
el
kl + 1

2p′(φ)εel
ij (C

α
ijkl − C

β

ijkl)ε
el
kl . (24)

3.3.2. Steinbach–Apel’s scheme (SAS). In SAS [11], the elastic energy is interpolated as

f el = p(φ)f el
α + [1 − p(φ)]f el

β (25)

with the elastic energy densities of the two phases defined as f el
α = 1

2ε
el,α
ij Cα

ijklε
el,α
kl and

f el
β = 1

2ε
el,β
ij C

β

ijklε
el,β
kl , respectively, where Cα

ijkl and C
β

ijkl are the stiffness tensors of the two

phases and elastic strains of the two phases, εel,α
kl and ε

el,β
kl , are introduced, similar to the phase

compositions in the Kim et al model (see appendix B):

εel
kl = p(φ)ε

el,α
kl + [1 − p(φ)]εel,β

kl . (26)

The eigenstrain is interpolated as ε∗
kl = p(φ)ε

∗,α
kl + [1−p(φ)]ε∗,β

kl . Moreover, the elastic stress
is assumed to be equal in both phases at every point in the system (Reuss–Sachs’ assumption):

σij = σα
ij = σ

β

ij , (27)

�⇒ εel
klCijkl = ε

el,α
kl Cα

ijkl = ε
el,β
kl C

β

ijkl . (28)

6
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From (26)–(28), we get

Cijkl = [p(φ)Sα
ijkl + {1 − p(φ)}Sβ

ijkl]
−1, (29)

where Sα
ijkl = [Cα

ijkl]
−1 and S

β

ijkl = [Cβ

ijkl]
−1. With this choice of interpolation scheme,

equations (23) and (25) are equivalent. The derivative of the elastic energy density with
respect to φ is given by (see appendix C):

∂f el

∂φ
= −p′(φ)σkl[(ε

∗,α
kl − ε

∗,β

kl ) +
1

2
(ε

el,α
kl − ε

el,β
kl )]. (30)

3.3.3. Voigt–Taylor’s scheme (VTS). In a VTS scheme, the total strain is assumed to be equal
in the two phases at every point in the interface (εtot

kl = ε
tot,α
kl = ε

tot,β
kl ) and the elastic stress

tensor is interpolated as:

σkl = p(φ)σα
kl + [1 − p(φ)]σβ

kl. (31)

The elastic strains of the two phases are then given by:

ε
el,α
kl = εtot

kl − ε
∗,α
kl , (32a)

ε
el,β
kl = εtot

kl − ε
∗,β

kl . (32b)

Furthermore, it is assumed that the elastic energy is interpolated as:

f el = p(φ)f el
α + [1 − p(φ)]f el

β . (33)

Then, the derivative of the elastic energy density with respect to φ has the following form:

∂f el

∂φ
= p′(φ)(f el

α − f el
β ) + p(φ)

∂f el
α

∂φ
+ [1 − p(φ)]

∂f el
β

∂φ
(34)

= p′(φ)(f el
α − f el

β ), (35)

which is different from the formulation of Ammar et al [15]. In their formulation, it is assumed
that the stiffness tensor is interpolated as Cijkl = p(φ)Cα

ijkl +[1−p(φ)]Cβ

ijkl and elastic energy

is given as f el = 1
2εel

ijCijklε
el
kl = p(φ)f el

α + [1 − p(φ)]f el
β . However, the latter equality is not

valid. Therefore, in this study, we have formulated the elastic energy as given in (33).

3.4. Solution of elastic strain field at mechanical equilibrium

The time scale of local displacements caused by elastic inhomogeneity in the system is much
smaller than that of chemical diffusion. Therefore, the system is assumed to be at mechanical
equilibrium at every time step:

∂σij

∂rj

= 0. (36)

The elastic stress can be written as

σij = [Cα
ijkl − C ′

ijkl(
−→r )]

[
εkl +

1

2

(
∂uk(

−→r )

∂rl

+
∂ul(

−→r )

∂rk

)
− p(φ)ε

∗,α
kl − (1 − p(φ))ε

∗,β

kl

]
,

(37)

where Cijkl is rewritten as Cijkl = Cα
ijkl − C ′

ijkl(
−→r ), with C ′

ijkl being different for SAS and
KHS, as given by (29) and (22), respectively. For VTS, elastic stress as given by (31) can be
used directly. For all schemes, the elastic strain fields are solved at every time step using the
spectral iterative perturbation method of Hu and Chen [20] (see appendix D). Iterations are
carried out until the displacement field converges. Heterogeneous strain is calculated from the
displacement field using (5) and elastic strain field is then calculated using (2).

7
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3.5. Phase-field equations

Microstructural evolution is given by the variation of the phase-field variables with time.
The temporal evolution of the non-conserved phase-field variable φ(−→r , t) is given by the
Ginzburg–Landau equation:

∂φ

∂t
= −L

δF

δφ
= −L

(
∂f int

∂φ
+

∂f ch

∂φ
+

∂f el

∂φ

)
, (38)

where L is a kinetic coefficient, ∂f int/∂φ is given by (16), ∂f ch/∂φ by (21), and ∂f el/∂φ by
equations (24), (30), and (35) for the three schemes, respectively.

The temporal evolution of the conserved molar fraction field c(−→r , t) is given by the
diffusion equation:

∂c

∂t
= −→∇ .

(
M

−→∇ δF

δc

)
= −→∇ .(M

−→∇ µ) (39)

for parabolic Gibbs free energies. µ is given by (20) and M , the chemical mobility, is assumed
to be a constant and equal in the two phases in the current work.

4. Simulation results

The phase-field model as described in section 3 is implemented for SAS, KHS and VTS for
the model binary two-phase system in the configuration presented in figure 1(a). For the three
schemes, it is validated to what extent they reproduce the findings obtained with Johnson’s
model (sections 2.1 and 2.2). It is first verified whether the bulk compositions, strains and
stresses from the simulations agree with the analytical model. Moreover, it is analysed for the
three schemes if the interpolation at the diffuse interface gives rise to excess interfacial energy
or stresses, which are not present in the analytical sharp interface model.

4.1. Setup

Simulations are performed for different sets of elastic properties that are chosen to analyse the
origin of excess interfacial contributions. The details are listed in table 1.

For all simulations except case III, a model system is considered. Scaled-down values
of the stiffnesses of Cu6Sn5 and Bct-Sn phases [21, 22] and chemical energies are considered
so that equilibrium could be reached faster. The system size is taken as 128 × 4 gridpoints,
with grid size 	x = 0.001. The parameters W = 500 and κ = 0.01 give interfacial energy
(σint) = 0.527 and interfacial width (lint) = 0.0139 or 13.9 	x. Chemical energy is given
by the parameters Aα = Aβ = 105, cα,0 = 0.2, and cβ,0 = 0.8. The elastic properties used
are Cα

1111 = 168 570, Cα
2222 = 165 390, Cα

1122 = 69 110, Cα
1212 = 45 981, C

β

1111 = 82 740,
C

β

1122 = 57 850, and C
β

1212 = 28 180. Eigenstrains in cases where they are non-zero are
taken as ε

∗,β

11 = ε
∗,β

22 = 0.02 and there are no applied strains. Other parameters are taken as
L = 10−7, M = 10−10 and time step 	t = 0.05.

In case III, simulations are performed for equilibrium between Bct-Sn and Cu6Sn5 phases
from the Cu–Sn binary system at 423 K. The system size is taken as 128 × 4 gridpoints, with
grid size 	x = 10 nm. The parameters W = 3.3 × 107 J m−3 and κ = 1.363 × 10−7 J m−1

give σint = 0.5 J m−2 and lint = 20	x. Chemical energy is given by the parameters
ACu6Sn5 = ABct = 1010 J m−3, c

Cu6Sn5
Sn,0 = 0.455, and cBct

Sn,0 = 0.999, which give the correct
equilibrium compositions at 423 K as computed using the COST 531 database [23]. The elastic
properties used are C

Cu6Sn5
1111 = 168.57 GPa, C

Cu6Sn5
2222 = 165.39 GPa, C

Cu6Sn5
1122 = 69.11 GPa,

8
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Table 1. List of elastic properties for different cases considered in this study in order to analyse
interfacial excess contributions.

Cases Cα
ijkl C

β
ijkl ε

∗,α
kl ε

∗,β
kl εkl

Case I
(homogeneous,
isotropic)




C
β

1111 C
β

1122 0

C
β

1122 C
β

1111 0

0 0
C

β
1111−C

β
1122

2







C
β

1111 C
β

1122 0

C
β

1122 C
β

1111 0

0 0
C

β
1111−C

β
1122

2





0

0
0







ε
∗,β

11

ε
∗,β

22

0





0

0
0




Case II
(inhomogeneous,
anisotropic)


Cα

1111 Cα
1122 0

Cα
1122 Cα

2222 0
0 0 Cα

1212







C
β

1111 C
β

1122 0

C
β

1122 C
β

2222 0

0 0 C
β

1212





0

0
0





ε

∗,β

11

ε
∗,β

22
0





0

0
0




Case III (Bct-Sn(α)–
Cu6Sn5(β)
system)


CBct

1111 CBct
1122 0

CBct
1122 CBct

2222 0
0 0 CBct

1212







C
Cu6Sn5
1111 C

Cu6Sn5
1122 0

C
Cu6Sn5
1122 C

Cu6Sn5
2222 0

0 0 C
Cu6Sn5
1212





0

0
0





ε

∗,Cu6Sn5
11

ε
∗,Cu6Sn5
22

0





0

0
0




Case IV (zero
off-diagonal terms,
only ε

∗,β

11 �= 0)


Cα

1111 0 0
0 Cα

2222 0
0 0 Cα

1212







C
β

1111 0 0

0 C
β

2222 0

0 0 C
β

1212





0

0
0





ε

∗,β

11
0
0





0

0
0




Case V (zero
off-diagonal terms,
dilatational ε

∗,β
kl )


Cα

1111 0 0
0 Cα

2222 0
0 0 Cα

1212







C
β

1111 0 0

0 C
β

2222 0

0 0 C
β

1212





0

0
0





ε

∗,β

11

ε
∗,β

22
0





0

0
0




Case VI (zero
off-diagonal terms,
only ε

∗,β

22 �= 0)


Cα

1111 0 0
0 Cα

2222 0
0 0 Cα

1212







C
β

1111 0 0

0 C
β

2222 0

0 0 C
β

1212





0

0
0





0

ε
∗,β

22
0





0

0
0




Case VII
(inhomogeneous,
ε

el,α
11 = ε

el,β
11 )


C

β

1111 Cα
1122 0

Cα
1122 Cα

2222 0
0 0 Cα

1212







C
β

1111 C
β

1122 0

C
β

1122 C
β

2222 0

0 0 C
β

1212





0

0
0





ε

∗,β

11
0
0





0

0
0




C
Cu6Sn5
1212 = 45.981 GPa, CBct

1111 = 82.74 GPa, CBct
1122 = 57.85 GPa, and CBct

1212 = 28.18 GPa
[21, 22]. Eigenstrains are assumed to be ε

∗,Cu6Sn5
11 = ε

∗,Cu6Sn5
22 = 0.5% and applied strains are

zero. Other parameters are taken as L = 10−10 m2 s kg−1, M = 10−21 m3 s kg−1 and time step
	t = 5 × 10−6 s.

Simulations are performed for KHS, SAS and VTS, starting with a sharp interface and
initial compositions cα,0 and cβ,0 of α and β respectively. Iterations are carried out for solving
the elastic field (as given in section 3.4) at every time step until the displacement field converges
upto an order of 10−9 (10−10 for case III). Plane strain condition is used to calculate the
compliances from the stiffnesses for 2D [24]. All simulations are performed for 106 time
steps (2.5 × 107 time steps for case III) to ensure that equilibrium is reached. Additional
simulations are also performed to test the sensitivity of the results with change in interfacial
width in the phase-field model by taking twice (27.8 	x) and thrice (41.7 	x) the initial value
of interfacial width, keeping the interfacial energy fixed. This is done by choosing κ and W

appropriately.

4.2. Analysis of bulk properties

Equilibrium compositions ce
α and ce

β calculated using (12) and (13) and heterogeneous strains

δεα
11 and δε

β

11 calculated using (10) and (11) from the sharp interface model compared with the
values obtained from the simulations for the three schemes are listed in table 2 for all cases.
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Table 2. Bulk properties obtained from the simulations for the different sets of elastic properties
are compared with analytical values for SAS, KHS and VTS. Compositions from simulations agree
with the analytical values, but heterogeneous strains do not agree in some cases (indicated in italics
and underlined) due to interfacial excess contributions.

Bulk property Scheme Case I Case II Case III Case IV Case V Case VI Case VII

δεα
11 KHS −0.0169 −0.0112 0.0048 −0.0066 −0.0066 0 −0.01

SAS −0.0169 −0.0111 0.0047 −0.0066 −0.0066 0 −0.01
VTS −0.0169 −0.0110 0.0048 −0.0065 −0.0065 0 −0.01
Analytical −0.0170 −0.0112 0.0047 −0.0066 −0.0066 0 −0.01

δε
β

11 KHS 0.0170 0.0112 −0.0047 0.0065 0.0065 0 0.01
SAS 0.0170 0.0113 −0.0047 0.0066 0.0066 0 0.01
VTS 0.0170 0.0115 −0.0047 0.0067 0.0068 0 0.01
Analytical 0.0170 0.0112 −0.0047 0.0066 0.0066 0 0.01

ce
α KHS 0.2009 0.2010 0.9981 0.2003 0.2006 0.2003 0.2006

SAS 0.2009 0.2010 0.9981 0.2003 0.2006 0.2003 0.2006
VTS 0.2009 0.2010 0.9981 0.2003 0.2006 0.2003 0.2006
Analytical 0.2009 0.2010 0.9981 0.2003 0.2006 0.2003 0.2006

ce
β KHS 0.8009 0.8010 0.4541 0.8003 0.8006 0.8003 0.8006

SAS 0.8009 0.8010 0.4541 0.8003 0.8006 0.8003 0.8006
VTS 0.8009 0.8010 0.4541 0.8003 0.8006 0.8003 0.8006
Analytical 0.8009 0.8010 0.4541 0.8003 0.8006 0.8003 0.8006

The values obtained from the simulations that disagree with the analytically calculated values
are indicated in italics and underlined.

The equilibrium compositions ce
α and ce

β are consistent with the analytical results for all
schemes for all cases. Taking case I as an example, all three schemes give identical composition
profiles (figure 2(a)). This is true for other cases also. Different from our observation, Ammar
et al [15] have found that their Reuss–Sachs scheme does not give the correct equilibrium
composition in the bulk phases for an elastically homogeneous system similar to case I. This
is because the φ-dependence of the phase strains ε

el,α
kl and ε

el,β
kl is not considered in their

calculation of ∂εel
kl/∂φ (see table in section 4.5 of Ammar et al [15]).

The heterogeneous strains from all simulations are within 3% of the calculated values.
The deviation from analytical values is generally larger for larger inhomogeneity in stiffnesses,
absolute values of strains or change in composition. There are two main causes for deviation
from the analytical values. Firstly, the analytical approach assumes an infinite system size,
unlike the limited system size in the simulations. Therefore, there is interface movement
due to the change in composition in order to maintain mass balance. This leads to a change
in relative areas of the two phases, thereby causing a slight deviation in the heterogeneous
strains, as per equation (11). If we take a larger system size in the simulations, this effect
diminishes. This explains fully the deviation in case I and it is consistent with the sharp
interface model. Additionally, for elastically inhomogeneous systems, the deviation is also
due to excess interfacial contributions introduced by the elastic energy formulation, which will
be discussed in section 4.3. This is inconsistent with the sharp interface model.

The εel
11 profiles are shown for case II in figure 2(b). Elastic strain for VTS is not shown

since it cannot be calculated directly from the formulation given in section 3.3.3. The elastic
energy and stress profiles for case III are given in figures 2(c) and (d), respectively. For some
cases, depending on the input values, there is a kink in the profiles near the diffuse interface,
which is not present in the analytical model. This is due to inappropriate interpolation at the
interface.
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Figure 2. Comparison of the bulk properties obtained from phase-field simulations for the three
schemes after 106 time steps: (a) Composition profiles are consistent with analytical results for
all cases (case I shown here). Kinks observed in the following profiles are due to inappropriate
interpolation at the interface: (b) Elastic strain εel

11 profiles of case II. (c) Elastic energy density
profiles of case III. (d) Elastic stress profiles of case III.

4.3. Analysis of interfacial excess properties

Due to diffuse interface description, the elastic energy may give rise to an excess interfacial
energy. Once the system is equilibrated, the excess elastic energy f el,xs, stress (σ xs

ij ) and strain

(εel,xs
ij ) can be calculated numerically from the simulations (equivalent to the Cahn–Hilliard [25]

definition of interfacial energy) as:

f el,xs =
∫ +∞

−∞
f el dl − f

el,α
0 lα − f

el,β
0 lβ (40)

= lint

0.8

[∫ 0

−∞
(f el − f

el,α
0 ) dφ −

∫ +∞

0
(f el − f

el,β
0 ) dφ

]
, (41)

(see appendix E)

σ xs
ij =

∫
l

σij dl − σ
α,0
ij lα − σ

β,0
ij lβ, (42)

ε
el,xs
ij =

∫
l

εel
ij dl − ε

el,α,0
ij lα − ε

el,β,0
ij lβ, (43)

where f el, σij and εel
ij are evaluated for the equilibrated system with diffuse interface, f el,0

α ,

f
el,0
β , σ

α,0
ij , σ

β,0
ij , ε

el,α,0
ij and ε

el,β,0
ij are the values obtained in the sharp interface model, and

lα and lβ , the lengths of the rectangular α and β phases respectively, with the position of the
interface taken at φ = 0.5. The excess stress and strain can be calculated in a similar manner,

11
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Figure 3. Variation of elastic energy with position: the two shaded areas between the diffuse
interface and sharp interface curves are equal in the absence of excess energy.

as shown by Müller and Saúl [26], under non-gliding condition of the system at mechanical
equilibrium.

If the elastic energy density in the diffuse interface model is plotted with respect to the
length of the system, then the two areas between the diffuse interface and sharp interface curves
as marked in figure 3 are equal in the absence of excess elastic energy. Therefore, f el evolves
linearly with p(φ), i.e. f el = p(φ)f

el,α
0 + [1 − p(φ)]f el,β

0 with the local phase quantities
f

el,α
0 and f

el,β
0 constant throughout the system and equal to the analytically calculated phase

quantities. Excess elastic energy, if present, is proportional to the diffuse interface width, as
given by (41). Our aim is to find an interpolation scheme that reproduces the findings of the
sharp interface model with no excess interfacial quantities.

Excess elastic energy (f el,xs), excess σ11 (σ xs
11 ), excess σ22 (σ xs

22 ), excess εel
11 (εxs

11) and
excess εel

22 (εxs
22) are calculated according to (40)–(43) and listed in table 3 as percentages of

the corresponding bulk quantities. For VTS, εxs
11 and εxs

22 are not listed since there is no direct
relation to calculate εel

ij . The values σ
α,0
ij , σ

β,0
ij , ε

el,α,0
ij , ε

el,β,0
ij , f

el,α
0 and f

el,β
0 are evaluated as

the bulk properties in each phase obtained in the simulations.
For all the cases except case III, in all the schemes, σ xs

11 is negligible, since for the considered
geometry, σ11 is equal in the two phases. However, when the magnitude of stress becomes
larger, as in case III, then a larger excess value is observed. This is reflected in the stress
profiles in figure 2(d) at the interface.

Considering cases I, II and III, the excess elastic energy comes from εel
11, σ22 and εel

22.
The excess energy increases with increase in interfacial width for all the schemes. For the
realistic case III with Cu6Sn5 and Bct-Sn phases, a large excess energy is observed for all
the schemes, which is inconsistent with the analytical results, in addition to inconsistent bulk
elastic properties as shown in table 2. This shows that none of the schemes agrees with the
analytical model for a general set of elastic properties.

In order to analyse the origin of σ xs
22 further and, in turn, find suitable conditions such that

SAS does not give excess energy, cases IV and V are considered. We choose the stiffnesses
of the two phases as containing only non-zero diagonal terms (table 1). This enables us to
study the effect of σ xs

22 independent of εel
11 and εel

12, since, in general, εel
22, εel

11 and εel
12 contribute

to σ22. Similarly, σ11 is independent of εel
22 and εel

12 here. Furthermore, considering only

12
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Table 3. Excess interfacial properties (expressed as % of the bulk value; if bulk value = 0, expressed
as absolute value and underlined; if excess value is of the order of 10−4% or less, indicated as 0)
obtained from simulations performed for different cases: σ xs

11 is zero or negligible for all cases
except III; Other properties are zero or negligible for SAS in case IV, for VTS in case VI and for
KHS in case VII.

Excess properties Case I Case II Case III Case IV Case V Case VI Case VII

f el,xs KHS −0.735 −0.531 −2.14 −0.617 −1.12 −1.34 0
f el,xs SAS −0.735 −0.333 −2.25 −0.0348 −1.18 −1.83 0.0092
f el,xs VTS 3.08 3.15 1.79 4.39 1.61 −0.0919 4.42

σ xs
11 KHS 0 0 0.0534 0 0 0 0

σ xs
11 SAS 0 −0.0092 0.0367 −0.005 −0.0037 0 0

σ xs
11 VTS 0 0 0.1964 0 0 0 0

σ xs
22 KHS −0.0939 1.19 −1.30 0 2.27 2.39 0.0166

σ xs
22 SAS −0.0939 1.23 −1.59 0 1.54 1.64 −0.150

σ xs
22 VTS −0.0939 0.413 −0.732 0 −0.193 −0.0919 −0.375

ε
el,xs
11 KHS 0.219 0.0222 −0.962 −0.617 −0.662 0 0

ε
el,xs
11 SAS 0.219 0.664 −0.567 −0.0349 −0.0656 0 0.0094

ε
el,xs
22 KHS −0.312 −0.342 −0.323 0 −0.195 −0.092 0

ε
el,xs
22 SAS −0.312 −0.341 −0.323 0 −0.194 −0.0919 0

ε
∗,β

11 �= 0 in case IV, there is only one non-zero component of stress, σ11. This ensures that
SAS condition is satisfied in the bulk phases in directions ‘1’ and ‘2’ (σα

22 = σ
β

22 = 0) in
the analytical calculations also. The elastic energy density as a function of the interpolation
function p(φ) is plotted in figure 4(a) for the three schemes for three different interface widths
(width1 (w1) = 13.9	x, width2 (w2) = 27.8	x, width3 (w3) = 41.7	x) for case IV. For
SAS, as expected, a linear relation independent of the interface width is obtained, indicating
no excess energy. However, this is not the case for KHS and VTS. σ xs

22 and εxs
11 are both

negligible for SAS (see table 3). This proves that SAS does not give excess interfacial energy
when the stiffness tensor and eigenstrain are of these specific forms. For KHS and VTS,
both the bulk and interfacial excess energies depend on the interface width, as shown in
figure 4(a).

In case V, where the stiffness tensors are the same as in case IV, but with ε∗
22 also non-

zero and equal to 0.02, we observe that σ22 is not zero. The effect of σ xs
22 can be analysed

independent of εel
11 here. There is an excess contribution from the ‘22’ components for all the

schemes (table 3). In SAS, σ22 is assumed to be equal in both phases, which is not true in
the sharp interface model (figure 1(b)), when there is non-zero eigenstrain in direction ‘2’.
Therefore, this causes the excess interfacial energy for SAS.

In case VI, the same stiffnesses as in cases IV and V are considered, but with only
ε

∗,β

22 �= 0 in the eigenstrain tensor. Since ε
∗,β

11 = 0, there is no heterogeneous strain generated,
i.e. δεkl = 0. This ensures that the VTS assumption of equal total strain (=0 here) is also valid
in the bulk phases in the sharp interface model. There is no excess interfacial energy only for
VTS in this case, as shown by figure 4(b).

KHS can be derived in an alternative way by introducing phase strains ε
el,α
kl and ε

el,β
kl which

are assumed to be equal, i.e.

εel
kl = ε

el,α
kl = ε

tot,α
kl − ε

∗,α
kl = ε

tot,β
kl − ε

∗,β

kl = ε
el,β
kl . (44)

Then, considering equations (22) and (23), the elastic energy density can be written in the
same form as (25) and (33). In case VII, Cα

1111 is taken equal to C
β

1111 and only ε
∗,β

11 �= 0 such
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Figure 4. Elastic energy density vs p(φ) obtained from phase-field simulations after 106 time
steps for the three schemes and thee different interface widths: No excess interfacial energy (linear
profile) for the following: (a) only SAS for case IV, (b) only VTS for case VI and (c) only KHS
for case VII ((d) is a zoomed-in version of (c) showing only KHS and SAS).

that ε
el,α
11 = ε

el,β
11 (see table 1). This condition is derived from (10), (11) and (44). There is no

excess interfacial energy only for KHS for this case as shown by figures 4(c) and 4(d).

5. An alternative quantitative scheme

5.1. Basic idea

Based on the observations in the previous section, we propose a new scheme with strain and
stress conditions at the interface which are in agreement with the analytical calculations. For
the considered model 2D system, σ11 and εtot

22 are constant and equal in the two phases in the
analytical model (figure 1). This condition is satisfied in the new scheme by combining SAS
(equal stress) for direction ‘1’, perpendicular to the interface, and VTS (equal total strain) for
direction ‘2’, tangential to the interface. For an arbitrary morphology in 2D with arbitrary
interface curvature, at every point on the interface, local equilibrium is maintained. The
relations of equal stress and equal total strain will then hold in the directions normal to the
interface and tangential to the interface respectively. Therefore, SAS and VTS can be applied
in a local reference frame with coordinate axes perpendicular and tangential to the interface.

5.2. Model formulation

For an arbitrary morphology in 2D, a local reference frame 1′–2′ can be defined with the 1′

and 2′ axes perpendicular and tangential to the interface respectively as shown in figure 5.
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Figure 5. Representation of a local reference frame used in the new scheme, with 1′ and 2′ axes
perpendicular and tangential to the interface respectively.

Let θ be the angle of rotation of the local reference frame with respect to the global
reference frame 1–2. Then, according to [5],

cos θ = ∇xφ

|∇φ| , (45)

sin θ = ∇yφ

|∇φ| , (46)

where ∇xφ and ∇yφ are the x- and y- components of the gradient of φ, respectively. The
mechanical equilibrium of the system is first solved separately using SAS and VTS in the
global reference frame, as described in sections 3.3.2 and 3.3.3, respectively. Let εSAS

kl and σ SAS
kl

denote the elastic strains and stresses obtained from SAS, and εVTS
kl and σ VTS

kl those obtained
from VTS in the global reference frame. Then, the stress, strain, stiffness and compliance
tensors are transformed to the local reference frame as:

σ
SAS,α′
ij = aimajnσ

SAS,α
mn , (47)

σ
VTS,α′
ij = aimajnσ

VTS,α
mn , (48)

ε
SAS,α′
ij = aimajnε

SAS,α
mn , (49)

ε
VTS,α′
ij = aimajnε

VTS,α
mn , (50)

Cα′
ijkl = aimajnakoalpCα

mnop, (51)

Sα′
ijkl = aimajnakoalpSα

mnop, (52)

where aim is the rotation matrix, with elements a11 = cos θ , a22 = cos θ , a12 = − sin θ and a21

= sin θ . Similarly, σ
β

ij , ε
el,β
ij , C

β

ijkl and S
β

ijkl are also transformed to the local reference frame.

In this local reference frame, σ
′
11 and εtot′

22 are constant and equal in the two phases and the
shear components are zero as given by the analytical model (figures 5 and 1). According to
SAS, σ

SAS,α′
11 = σ

SAS,β ′
11 and according to VTS, ε

tot,VTS,α′
22 = ε

tot,VTS,β ′
22 . Using these two facts,

in the new scheme, SAS in direction 1′ and VTS in direction 2′ are combined as follows.
In the local reference frame, the elastic stress components σα′

11 and σ
β ′
11 are both taken

equal to σ SAS′
11 (=σ

SAS,α′
11 = σ

SAS,β ′
11 ) and the total phase strains ε

tot,α′
22 and ε

tot,β ′
22 equal to
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ε
tot,VTS′
22 (=ε

tot,VTS,α′
22 = ε

tot,VTS,β ′
22 ). The elastic strains ε

el,α′
22 and ε

el,β ′
22 are then taken as

ε
VTS,α′
22 and ε

VTS,β ′
22 , respectively. Since shear strains are zero in the local reference frame,

σα′
22 = Cα′

1122ε
el,α′
11 + Cα′

2222ε
VTS,α′
22 and ε

el,α′
11 = Sα′

1111σ
SAS,α′
11 + Sα′

1122σ
α′
22 . Therefore, in the new

scheme, σα′
22 and ε

el,α′
11 are calculated in terms of σ

SAS,α′
11 and ε

VTS,α′
22 as:

σα′
22 = Cα′

2222ε
VTS,α′
22 + Cα′

1122S
α′
1111σ

SAS,α′
11

1 − Cα′
1122S

α′
1122

, (53)

ε
el,α′
11 = Sα′

1111σ
SAS,α′
11 + Sα′

1122C
α′
2222ε

VTS,α′
22

1 − Sα′
1122C

α′
1122

. (54)

Similarly, σ
β ′
22 and ε

el,β ′
11 can also be obtained from σ

SAS,β ′
11 and ε

VTS,β ′
22 in the local reference

frame.
The elastic energy density is interpolated as:

f el = p(φ)f el
α + [1 − p(φ)]f el

β (55)

= p(φ) 1
2 (σ

SAS,α′
11 ε

el,α′
11 + σα′

22ε
VTS,α′
22 ) + [1 − p(φ)] 1

2 (σ
SAS,β ′
11 ε

el,β ′
11 + σ

β ′
22ε

VTS,β ′
22 ),

(56)

and its derivative with respect to φ is accordingly:

∂f el

∂φ
= 1

2
p′(φ)(f el

α − f el
β ) +

1

2
p(φ)

∂

∂φ

[
σ

SAS,α′
11 ε

el,α′
11 + σα′

22ε
VTS,α′
22

]

+
1

2
[1 − p(φ)]

∂

∂φ

[
σ

SAS,β ′
11 ε

el,β ′
11 + σ

β ′
22ε

VTS,β ′
22

]
, (57)

where ∂σ
SAS,α′
11 /∂φ and ∂σ

SAS,β ′
11 /∂φ are calculated according to SAS (see appendix F) and

ε
VTS,α′
22 and ε

VTS,β ′
22 are constants with respect to φ as per VTS formulation.

Finally, the stresses and strains can be obtained in the global reference by the following
transformation:

σij = amianjσ
′
mn, (58)

εel
ij = amianj ε

el′
mn. (59)

For 3D systems, a similar approach can be followed, using the appropriate rotation matrix aim

and expanding all the tensors with indices 1, 2 and 3. A local reference frame with 1′ axis
normal to the interface and 2′ and 3′ axes in the plane tangential to the interface can be defined
such that the shear strains are zero. Then, σ33 and εel

33 can be treated similar to σ22 and εel
22

respectively.

5.3. Application

Using this new scheme, simulations are performed for the general case II (as described
in table 1) with the 2D configuration of figure 1. For this configuration, the coordinate
transformations in the new scheme leave the tensors unchanged since the normal and the
tangent to the interface are parallel to the two coordinate axes of the global reference frame; in
other words, the local reference frame is the same as the global one. Simulations are performed
for three different interface widths using the same parameters as listed in section 4.1. The
compositions agree with the analytical results. The heterogeneous strains obtained in the two
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Figure 6. Elastic energy density versus p(φ) for the general case II using the new scheme after 106

time steps for three different interface widths: a linear profile implies no excess interfacial energy.

phases using this scheme are δεα
11 = −0.0111 and δε

β

11 = 0.0113. This slight deviation
from the analytically calculated values (−0.0112 and 0.0112) is, however, not due to excess
interfacial energy, since the plots of f el versus p(φ) given in figure 6 show that there is no
excess energy even with change in interface width for this scheme. The deviation is mainly
due to the limited system size.

6. Conclusions

Our analysis showed that depending on the choice of interpolation scheme, interfacial excess
contributions to the energy and elastic properties, varying with the diffuse interface width,
may arise in phase-field models coupled with micro elasticity theory. In this work, three
existing interpolation schemes of bulk elastic properties in phase-field models were analysed
with respect to the equilibrium bulk properties and interfacial excess contributions obtained
using them.

A 2D binary two-phase system with specific geometry is considered, for which the
change in equilibrium composition in the presence of strains and the heterogeneous strain
arising in the system are calculated analytically using Johnson’s model. For different sets of
elastic properties of the 2D system, including a realistic Cu6Sn5–Bct-Sn system, the change
in equilibrium composition obtained in the phase-field simulations is consistent with the
analytically calculated value for all schemes. The heterogeneous strains, however, deviate
in many cases because of excess interfacial contributions and finite system size. Moreover, for
some cases, including Cu6Sn5–Bct-Sn, a kink, which is not present in the analytical model, is
observed near the interface in the profiles of elastic properties, due to inappropriate interpolation
of the elastic properties in the diffuse interface.

In order to perform quantitative, realistic phase-field simulations which take into account
elastic effects, a new scheme is proposed based on the analysis of the existing schemes. In the
new scheme, a combination of equal total strain (VTS) in the direction parallel to the interface
and equal stress (SAS) in the direction normal to the interface is used based on the interfacial
conditions from the analytical model. For a general set of elastic properties, the new scheme
is validated for the model 2D system and found to be consistent with the analytical model of
Johnson. In the future, this approach will be extended to simulate multi-phase multi-component
systems.
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Appendix A. Derivative of chemical energy density with respect to φ

From equation (20),

∂2f ch
α

∂2cα

= ∂

∂cα

(
∂f ch

β

∂cβ

)
(A.1)

= ∂2f ch
β

∂2cβ

∂cβ

∂cα

(A.2)

⇒ Aα = Aβ ∂cβ

∂cα

(A.3)

⇒ ∂cβ

∂cα

= Aα

Aβ
(A.4)

∂cα

∂cβ

= Aβ

Aα
. (A.5)

Differentiating (19) with respect to φ,

0 = p(φ)
∂cα

∂φ
+ [1 − p(φ)]

Aα

Aβ

∂cα

∂φ
+ p′(φ)(cα − cβ) (A.6)

⇒ ∂cα

∂φ
= Aβ(cβ − cα)p′(φ)

p(φ)Aβ + [1 − p(φ)]Aα
(A.7)

∂cβ

∂φ
= Aα(cβ − cα)p′(φ)

p(φ)Aβ + [1 − p(φ)]Aα
(using (A.4) and (A.7)). (A.8)

Differentiating (17) with respect to φ,

∂f ch

∂φ
= p′(φ)(f ch

α − f ch
β ) + p(φ)

∂f ch
α

∂φ
+ [1 − p(φ)]

∂f ch
β

∂φ
. (A.9)

Using (18), (20), (A.7) and (A.8)],

∂f ch

∂φ
= p′(φ)

(
µ2

α

2Aα
− µ2

β

2Aβ

)

+
p(φ)µαp′(φ)Aβ(cβ − cα) + [1 − p(φ)]µβp′(φ)Aα(cβ − cα)

p(φ)Aβ + [1 − p(φ)]Aα
(A.10)

= p′(φ)

[
µ2

α

2Aα
− µ2

β

2Aβ
+ µ(cβ − cα)

]
(A.11)

= p′(φ)

[
µ2

α

2Aα
− µ2

β

2Aβ
+ µ

(µβ

Aβ
+ cβ,0 − µα

Aα
− cα,0

)]
(A.12)

= p′(φ)[f ch
β − f ch

α + µ(cβ,0 − cα,0)]. (A.13)
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Appendix B. Calculation of phase strains for SAS

The phase strains are calculated as follows:

σα
ij = σ

β

ij (B.1)

i.e.,

∂f el
α

∂ε
el,α
ij

= ∂f el
β

∂ε
el,β
ij

(B.2)

⇒ Cα
ijmnε

el,α
mn = C

β

ijklε
el,β
kl (B.3)

⇒ ε
el,β
kl = [Cβ

ijkl]
−1Cα

ijmnε
el,α
mn (B.4)

= Mklmnε
el,α
mn . (B.5)

Using (26) and (B.5),

εel
kl = p(φ)ε

el,α
kl + [1 − p(φ)]Mklmnε

el,α
mn , (B.6)

ε
el,α
kl is obtained by solving (B.6).

Appendix C. Derivative of elastic energy density with respect to φ for SAS

∂f el

∂φ
= p′(φ)(f el

α − f el
β ) + p(φ)

∂f el
α

∂φ
+ [1 − p(φ)]

∂f el
β

∂φ
(C.1)

= p′(φ)(f el
α − f el

β ) + p(φ)Cα
ijklε

el,α
ij

∂ε
el,α
kl

∂φ
+ [1 − p(φ)]Cβ

ijklε
el,β
ij

∂ε
el,β
kl

∂φ
(C.2)

= p′(φ)(f el
α − f el

β ) + σkl

[
p(φ)

∂ε
el,α
kl

∂φ
+ (1 − p(φ))

∂ε
el,β
kl

∂φ

]
(C.3)

= p′(φ)(f el
α − f el

β ) + σkl

[
∂εel

kl

∂φ
− p′(φ)(ε

el,α
kl − ε

el,β
kl )

]
(C.4)

= p′(φ)( 1
2σklε

el,α
kl − 1

2σklε
el,β
kl ) + σkl[−p′(φ)(ε

∗,α
kl − ε

∗,β

kl ) − p′(φ)(ε
el,α
kl − ε

el,β
kl )] (C.5)

∂f el

∂φ
= −p′(φ)σkl[(ε

∗,α
kl − ε

∗,β

kl ) + 1
2 (ε

el,α
kl − ε

el,β
kl )]. (C.6)

Appendix D. Hu–Chen’s numerical framework

Appendix D.1. Zeroth-order approximation

Following the method of Hu and Chen [20], as a zeroth-order approximation, the stiffness
tensor is taken as Cα

ijkl , a constant, ignoring C ′
ijkl , which is a function of position. Rewriting

equation (36), we get

1

2
Cα

ijkl

(
∂2u0

k(
−→r )

∂rj ∂rl

+
∂2u0

l (
−→r )

∂rj ∂rk

)
= Cα

ijkl

∂p(φ)

∂rj

(ε
∗,α
kl − ε

∗,β

kl ), (D.1)

where u0
k(

−→r ) is the displacement field in the zeroth-order approximation. It can be solved by
transformation into Fourier space:

1
2Cα

ijkl[i
2gjglv

0
k (

−→g ) + i2gjgkv
0
l (

−→g )] = Cα
ijkl(ε

∗,α
kl − ε

∗,β

kl )[igjq(−→g )], (D.2)

where v0
k (

−→g ) and q(−→g ) are the Fourier transforms of u0
k(

−→g ) and p(φ), respectively. The
displacement field in the real space is obtained by taking the back-Fourier transform of v0

k (
−→g ).
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Appendix D.2. Higher-order approximation

Rewriting (36) with the same left hand side as that of (D.1), we get

1

2
Cα

ijkl

(
∂2un

k(
−→r )

∂rj ∂rl

+
∂2un

l (
−→r )

∂rj ∂rk

)
= (ε

∗,α
kl − ε

∗,β

kl )Cα
ijkl

∂p(φ)

∂rj

+ (εkl − ε
∗,β

kl )
∂C ′

ijkl(
−→r )

∂rj

+
1

2

∂

∂rj

[
C ′

ijkl(
−→r )

(
∂un−1

k (−→r )

∂rl

+
∂un−1

l (−→r )

∂rk

)]

− (ε
∗,α
kl − ε

∗,β

kl )
∂

∂rj

(C ′
ijkl(

−→r )p(φ)). (D.3)

The nth order solution for displacement field can be obtained by substituting the (n − 1)th
order solution on the right hand side and solving it in Fourier space. Equation (D.3) when
transformed to Fourier space becomes
1
2Cα

ijkl[i
2gjglv

n
k (

−→g ) + i2gjgkv
n
l (

−→g )]

= (ε
∗,α
kl − ε

∗,β

kl )Cα
ijkl[igjq(−→g )] + (εkl − ε

∗,β

kl )[igjC
′
ijkl(

−→g )]

+ 1
2 igj fft2[C ′

ijkl(
−→r ){ifft2(iglv

n−1
k (−→g )) + ifft2(igkv

n−1
l (−→g ))}]

− (ε
∗,α
kl − ε

∗,β

kl )[igj fft2(C ′
ijkl(

−→r )p(φ))], (D.4)

where fft2() and ifft2() denote forward and back-Fourier transforms, respectively.

Appendix E. Calculation of excess interfacial energy

f el,xs =
∫ +∞

−∞
f el dl − f

el,α
0 lα − f

el,β
0 lβ (E.1)

=
∫ 0

−∞
[p(φ)f el

α + (1 − p(φ))f el
β − f

el,α
0 ] dl

−
∫ +∞

0
[p(φ)f el

α + (1 − p(φ))f el
β − f

el,β
0 ] dl (E.2)

=
∫ 0

−∞
[f el − f

el,α
0 ]

dl

dφ
dφ −

∫ +∞

0
[f el − f

el,β
0 ]

dl

dφ
dφ (E.3)

= lint

0.8

[∫ 0

−∞
(f el − f

el,α
0 ) dφ −

∫ +∞

0
(f el − f

el,β
0 ) dφ

]
(E.4)

using the definition of interfacial width lint = 0.8 dl/dφ.

Appendix F. New scheme—calculation of elastic energy

Expanding (57),

∂f el

∂φ
= 1

2
p′(φ)[σ SAS,α′

11 ε
el,α′
11 − σ

SAS,β ′
11 ε

el,β ′
11 + σα′

22ε
VTS,α′
22 − σ

β ′
22ε

VTS,β ′
22 ]

+
1

2
p(φ)

∂

∂φ

[
σ

SAS,α′
11 ε

el,α′
11 + σα′

22ε
VTS,α′
22

]

+
1

2
[1 − p(φ)]

∂

∂φ

[
σ

SAS,β ′
11 ε

el,β ′
11 + σ

β ′
22ε

VTS,β ′
22

]
. (F.1)
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Since ∂εel′
22/∂φ = 0 as per VTS formulation, ∂f el/∂φ is calculated using the following:

∂ε
el,α′
11

∂φ
= Sα′

1111

1 − Sα′
1122C

α′
1122

∂σ
SAS,α′
11

∂φ
(from (54)), (F.2)

∂σα′
22

∂φ
= Cα′

1122S
α′
1111

1 − Sα′
1122C

α′
1122

∂σ
SAS,α′
11

∂φ
(from (53)). (F.3)

Similar expressions are obtained for ∂ε
el,β ′
11 /∂φ and ∂σ

β ′
22/∂φ. Then, ∂σ

SAS,α′
11 /∂φ and

∂σ
SAS,β ′
11 /∂φ are calculated according to SAS as

∂σ
SAS,α′
11

∂φ
= Cα′

1111
∂ε

SAS,α′
11

∂φ
+ Cα′

1122
∂ε

SAS,α′
22

∂φ
+ 2Cα′

1112
∂ε

SAS,α′
12

∂φ
(F.4)

∂σ
SAS,β ′
11

∂φ
= C

β ′
1111

∂ε
SAS,β ′
11

∂φ
+ C

β ′
1122

∂ε
SAS,β ′
22

∂φ
+ 2C

β ′
1112

∂ε
SAS,β ′
12

∂φ
(F.5)

with

∂ε
SAS,α′
kl

∂φ
= [p(φ)I + (1 − p(φ))M ′

klmn]−1

[−p′(φ)(ε
∗,α′
kl − ε

∗,β ′
kl ) − p′(φ)(ε

SAS,α′
kl − ε

SAS,β ′
kl )] (F.6)

and

∂ε
SAS,β ′
kl

∂φ
= M ′

klmn

∂ε
SAS,α′
kl

∂φ
, (F.7)

where M ′
klmn = [Cβ ′

ijkl]
−1Cα′

ijmn.
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